花生籽仁大小相关性状QTL定位
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Identification of QTL related to seed size in peanut (Arachis hypogaea L.)
  • 作者:曾新颖 ; 郭建斌 ; 赵姣姣 ; 陈伟刚 ; 邱西克 ; 黄莉 ; 罗怀勇 ; 周晓静 ; 姜慧芳 ; 黄家权
  • 英文作者:ZENG Xin-Ying;GUO Jian-Bin;ZHAO Jiao-Jiao;CHEN Wei-Gang;QIU Xi-Ke;HUANG Li;LUO Huai-Yong;ZHOU Xiao-Jing;JIANG Hui-Fang;HUANG Jia-Quan;Institute of Tropical Agriculture and Forestry, Hainan University/Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources;Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs;
  • 关键词:花生 ; 遗传图谱 ; 籽仁大小 ; QTL
  • 英文关键词:peanut;;genetic mapping;;seed size;;QTL
  • 中文刊名:XBZW
  • 英文刊名:Acta Agronomica Sinica
  • 机构:海南大学热带农林学院/海南省热带资源可持续利用重点实验室;中国农业科学院油料作物研究所/农业农村部油料作物生物学与遗传育种重点实验室;
  • 出版日期:2019-05-08 10:02
  • 出版单位:作物学报
  • 年:2019
  • 期:v.45
  • 基金:国家自然科学基金项目(31461143022,31761143005,31571713,31801403,31871666);; 农业部农作物种质资源保护项目(2017NWB033);; 国家农作物种质资源共享服务平台(NICGR2017-36);; 国家现代农业产业技术体系建设专项(CARS-13-种质资源评价)资助~~
  • 语种:中文;
  • 页:XBZW201908008
  • 页数:8
  • CN:08
  • ISSN:11-1809/S
  • 分类号:68-75
摘要
花生籽仁大小相关性状是决定花生产量的直接因素。为发掘与花生籽仁大小相关的QTL,本研究以中花16×J11构建的RIL群体为材料,得到了一张包含289个SSR标记、21个连锁群、覆盖长度为947.3cM的遗传连锁图谱。连续2年对籽仁大小相关性状鉴定表明,各性状在群体中变异广泛,呈典型正态分布,且大部分性状间显著相关。结合本研究构建的遗传图谱,利用WinCart2.5进行QTL定位分析,2年共检测到66个QTL,贡献率为3.23%~33.01%。与籽仁长(SL)、籽仁宽(SW)、籽仁长宽比(LWR)和百仁重(HSW)相关的QTL分别有18、16、18和14个。在这些QTL中,A05染色体上的区间A05A1500-A05A1530同时存在控制籽仁长(qSLA05.1和qSLA05.2)和百仁重的相关的QTL(qHSWA05.1);B06染色体上的区间A06B135-A06B113同时存在控制籽仁宽(qSWB06.2和qSWB06.4)和百仁重相关的QTL (qHSWB06.4),这些稳定存在的主效QTL将为花生产量相关性状的精细定位和分子育种奠定基础。
        Seed size-related traits are the direct factors determining the yield of peanut. To identify the QTL related to seed size-related traits, a recombinant inbred lines(RIL) population(188 progenies) derived from Zhonghua 16 × J11 was used in this study. A genetic linkage map of 947.3 cM in length was constructed, containing 21 linkage groups and 289 SSR markers. Seed size-related traits showed extensive variations in two years' phenotyping. Between most of the traits with significant correlation.Based on the genetic map, we detected 66 QTL with the explained phenotypic variance(PVE) of 3.23%–33.01% were detected using the WinCart 2.5 software. The number of QTL for seed length(SL), seed width(SW), ratio of seed length to width(LWR)and hundred seed weight(HSW) were 18, 16, 18, and 14, respectively. Notably, the A05 A1500–A05 A1530 interval on Chromosome A05 harbored three QTL, i.e. q SLA05.1 and qSLA05.2 for SL and qHSWA05.1 for HSW, and the A06 B135–A06 B113 interval on B06 harbored three QTL as well, i.e. qSWB06.2 and qSWB06.4 for SW and qHSWB06.4 for HSW. These stable and major QTL pave a way for fine mapping of peanut yield-related traits and molecular breeding.
引文
[1]Gomes R L F,Lopes?C A.Correlations and path analysis in peanut.Crop Breed Appl Biotechnol,2005,5:105-112.
    [2]Selvaraj M G,Narayana M,Schubert A M,Ayers J L,Baring M R,Burow M D.Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis.Electron J Biotechnol,2009,12:13.
    [3]Getahun A,Yang X L,He M J,Cui S L,Mu G J,Liu L F.Advances of genetic map construction and QTL mapping in peanut.J Peanut Sci,2017,46:1-10.
    [4]Wilson J N,Chopra R,Baring M R,Selvaraj M G,Simpson C E,Chagoya J,Burow M D.Advanced backcross quantitative trait loci(QTL)analysis of oil concentration and oil quality traits in peanut(Arachis hypogaea L.).Tropical Plant Biol,2017,10:1-17.
    [5]Wang M L,Khera P,Pandey M K,Wang H,Qiao L X,Feng S P,Tonnis B,Barkley N A,Pinnow D,Holbrook C C,Culbreath A K,Varshney R K,Guo B Z.Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut(Arachis hypogaea L.).PLoS One,2015,10:e0119454.
    [6]Khedikar Y P,Gowda M V C,Sarvamangala C,Patgar K V,Upadhyaya H D,Varshney R K.A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut(Arachis hypogaea L.).Theor Appl Genet,2010,121:971-984.
    [7]Pandey M K,Wang H,Khera P,Vishwakarma M K,Kale S M,Culbreath A K,Holbrook C C,Wang X J,Varshney R K,Guo BZ.Genetic dissection of novel QTLs for resistance to leaf spots and tomato spotted wilt virus in peanut(Arachis hypogaea L.).Front Plant Sci,2017,8:25.
    [8]Luo H Y,Xu Z J,Li Z D,Li X P,Lv J W,Ren X P,Huang L,Zhou X J,Chen Y N,Yu J Y,Chen W G,Lei Y,Liao B S,Jiang HF.Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut(Arachis hypogaea L.).Theor Appl Genet,2017,130:1635-1648.
    [9]Chen Y N,Ren X P,Zheng Y L,Zhou X J,Huang L,Yan L Y,Jiao Y Q,Chen W G,Huang S M,Wan L Y,Lei Y,Liao B S,Huai D X,Wei W H,Jiang H F.Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG6375 of peanut(Arachis hypogaea L.).Mol Breed,2017,37:17.
    [10]Shirasawa K,Koilkonda P,Aoki K,Hirakawa H,Tabata S,Watanabe M,Hasegawa M,Kiyoshima H,Suzuki S,Kuwata C,Naito Y,Kuboyama T,Nakaya A,Sasamoto S,Watanabe A,Kato M,Kawashima K,Kishida Y,Kohara M,Kurabayashi A,Takahashi C,Tsuruoka H,Wada T,Isobe S.In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut.BMC Plant Biol,2012,12:80.
    [11]Ravi K,Vadez V,Isobe S,Mir R R,Guo Y,Nigam S N,Gowda M V C,Radhakrishnan T,Bertioli D J,Knapp S J,Varshney R K.Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut(Arachis hypogaea L.).Theor Appl Genet,2011,122:1119-1132.
    [12]王传堂,黄粤,杨新道,姜勇,张建成,陈殿绪,闵平,禹山林.改良CTAB法和高盐低pH值法提取花生DNA的效果.花生学报,2002,31:20-23.Wang C T,Huang Y,Yang X D,Jiang Y,Zhang J C,Chen D X,Min P,Yu S L.Isolation of DNA from peanut:comparison between modified CTAB and high salt,low pH methods.Peanut Sci,2002,31:20-23(in Chinese with English abstract).
    [13]Chen W G,Jiao Y Q,Cheng L Q,Huang L,Liao B S,Tang M,Ren X P,Zhou X J,Chen Y N,Jiang H F.Quantitative trait locus analysis for pod-and kernel-related traits in the cultivated peanut(Arachis hypogaea L.).BMC Genet,2016,17:25.
    [14]Luo H Y,Ren X P,Li Z D,Xu Z J,Li X P,Huang L,Zhou X J,Chen Y N,Chen W G,Lei Y,Liao B S,Pandey M K,Varshney RK,Guo B Z,Jiang X G,Liu F,Jiang H F.Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A05 in cultivated peanut(Arachis hypogaea L.).BMC Genomics,2017,18:58.
    [15]Luo H Y,Guo J B,Ren X P,Chen W G,Huang L,Zhou X J,Chen Y N,Liu N,Xiong F,Lei Y,Liao B S,Jiang H F.Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut(Arachis hypogaea L.).Theor Appl Genet,2017,131:267-282.
    [16]李振动,李新平,黄莉,任小平,陈玉宁,周小静,廖伯寿,姜慧芳.栽培种花生荚果大小相关性状QTL定位.作物学报,2015,41:1313-1323.Li Z D,Li X P,Huang L,Ren X P,Chen Y L,Zhou X J,Liao B S,Jiang H F.Mapping of QTLs for pod size related traits in cultivated peanut(Arachis hypogaea L.).Acta Agron Sin,2015,41:1313-1323(in Chinese with English abstract).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700