非对称Gaussian限制势量子阱中强耦合极化子的基态能量
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Ground State Energy of Strong-coupling Polaron in an Asymmetrical Gaussian Confinement Potential Quantum Well
  • 作者:孙丙西 ; 肖景林
  • 英文作者:SUN Bing-xi;XIAO Jing-lin;Institute of Condensed Matter Physics, Inner Mongolia University for Nationalities;
  • 关键词:非对称Gaussian限制势量子阱 ; 强耦合 ; 极化子 ; 线性组合算符 ; 基态能量
  • 英文关键词:Asymmetrical Gaussian confinement potential quantum well;;Strong coupling;;Polaron;;Linear combination operator;;Ground state energy
  • 中文刊名:NMMS
  • 英文刊名:Journal of Inner Mongolia University for Nationalities(Natural Sciences)
  • 机构:内蒙古民族大学凝聚态物理研究所;
  • 出版日期:2019-01-15
  • 出版单位:内蒙古民族大学学报(自然科学版)
  • 年:2019
  • 期:v.34;No.137
  • 基金:国家自然科学基金项目(11464033)
  • 语种:中文;
  • 页:NMMS201901003
  • 页数:4
  • CN:01
  • ISSN:15-1220/N
  • 分类号:11-14
摘要
应用线性组合算符和幺正变换方法从理论上研究了非对称Gaussian限制势CsI半导体量子阱中强耦合极化子基态能量的性质,仔细地分析了非对称Gaussian限制势量子阱中强耦合极化子的基态能量与非对称Gaussian受限势量子阱的势垒高度和非对称Gaussian受限势的范围的依赖关系.通过数值计算结果发现,量子阱中强耦合极化子的基态能量的绝对值是非对称Gaussian受限势量子阱的势垒高度和非对称Gaussian受限势的范围的增函数.
        The properties of the ground state energy of the strong-coupling polaron in an asymmetrical Gaussian confinement potential CsI semiconductor quantum well were theoretically studied by using the linear combination operator and unitary transformation methods. The influences of the barrier height of the quantum well and the range of the Gaussian confinement potential on the polaron's ground state energy are analyzed. The numerical results found that the absolute value of the ground state energy of strong-coupling polaron is an increasing function of the range of the Gaussian confinement potential and the barrier height of the quantum well.
引文
[1]Zhai W J.A study of electric-field-induced second-harmonic generation in asymmetrical Gaussian potential quantum wells[J].Physica B,2014,452:50-55.
    [2]肖景林.非对称Gaussian限制势量子阱中强耦合极化子的性质[J].内蒙古民族大学学报(自然科学版),2015,30(5):369-371.
    [3]Guo A X,Du J F.Linear and nonlinear optical absorption coefficients and refractive index changes in asymmetrical Gaussian potential quantum wells with applied electric field[J].Superlatt Microstruct,2013,64:158-166.
    [4]Wu J H,Guo K X,Liu G H.Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells with applied electric fields[J].Physica B,2014,446:59-62.
    [5]苏莉,肖景林.磁场对非对称高斯势量子阱中弱耦合极化子基态结合能的影响[J].内蒙古民族大学学报(自然科学版),2018,33(3):198-200.
    [6]苗秀娟,梁志辉,肖景林.非对称高斯势量子阱中强耦合极化子基态的杂质效应[J].内蒙古民族大学学报(自然科学版),2017,32(5):374-376.
    [7]Miao Xiu-Juan,Sun Yong,XiaoJ ing-Lin.Effect of impurities on the properties of bound polarons in an asymmetric Gaussian confinement potential quantum well[J].J.Korean Phys Soc,2015,67(7):1197-1200.
    [8]XiaoJ ing-Lin..The effect of electric field on RbCl asymmetric Gaussian confinement potential quantum well qubit[J].Int.J Theor Phys,2016,55:147-154.
    [9]Ma Xin-Jun,Xiao Jing-Lin,The influences of electric field and temperature on state energies of a strong-coupling polaron in an asymmetric Gaussian potential quantum well[J].Chinese J Phys,2018,56(2):561-566.
    [10]李红娟.光学声子对三角束缚势量子点量子比特消相干时间的影响[J].赤峰学院学报(自然科学版),2018,34(9):11-12.
    [11]Devreese J T.Polarons in ionic crystals and polar semiconductors[M].Amsterdam:North-Holland Publishing company,1972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700