内嵌矩形腔楔形金属狭缝阵列的宽频异常透射(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Broadband extraordinary optical transmission through tapered metallic slits array embedded with rectangular cavities
  • 作者:祁云平 ; 张雪伟 ; 胡月 ; 胡兵兵 ; 王向贤
  • 英文作者:Qi Yunping;Zhang Xuewei;Hu Yue;Hu Binbing;Wang Xiangxian;College of Physics and Electronic Engineering, Northwest Normal University;School of Science, Lanzhou University of Technology;
  • 关键词:光学异常透射 ; 表面等离激元 ; 楔形金属狭缝 ; 有限元法
  • 英文关键词:extraordinary optical transmission;;surface plasmon polaritons;;tapered metallic slits array;;the finite element method
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:西北师范大学物理与电子工程学院;兰州理工大学理学院;
  • 出版日期:2018-06-25
  • 出版单位:红外与激光工程
  • 年:2018
  • 期:v.47
  • 基金:国家自然科学基金(61367005,61741119);; 甘肃省自然科学基金(17JR5RA078);; 西北师范大学“学生创新能力提升计划”(CX2018Y167)
  • 语种:英文;
  • 页:HWYJ2018S1034
  • 页数:6
  • CN:S1
  • ISSN:12-1261/TN
  • 分类号:221-226
摘要
为了实现宽频透射,设计了内嵌矩形腔的楔形金属狭缝结构,并用有限元方法研究了其透射特性。结果表明,内嵌矩形腔的楔形金属狭缝阵列在红外范围内可以实现宽带、广角度的增强传输,并且与直缝结构对比光是强烈局域在狭缝出口处。用传输线理论来描述这种现象。此外,还讨论了入射极化角度、狭缝入口宽度、楔形狭缝的中心偏置等因素对透射的影响。这些结果对光信号传输、宽带传输和近场光采集装置的设计具有一定的指导意义。
        To achieve nonresonant broadband extraordinary optical transmission(EOT), tapered metallic slits array embedded with rectangular cavities structure was proposed and its transmission properties were investigated using the finite element method(FEM). The results show that tapered metallic slits array embedded with rectangular cavities can achieve broadband and wide-angle enhanced transmission in the infrared and the light is strongly localized enhanced at the slit exits, in contrast with straight slits structure. The phenomenon was described with a transmission line model. In addition, the effects of incident polarization, the entrance width of the slit, and the centers misalignment of the tapered slits on the transmission property were also studied. These results would be helpful for optical signal transmission and the designing near field light harvesting devices with broadband and strong transmission.
引文
[1]Ebbesen T W,Lezec H J,Ghaemi H F,et al.Extraordinary optical transmission through sub-wavelength hole arrays[J].Nature,1998,391(6):667-669.
    [2]Barnes W L,Dereux&Amp A,Ebbesen T W.Surface plasmon subwavelength optics.[J].Nature,2003,424(6950):824-830.
    [3]Sun Bin,Wang Lingling,Wang Liu,et al.Improved extraordinary optical transmission though single nano-slit by nano-defocusing.[J].Opt Laser Technol,2013,54:214-218.
    [4]Wijesinghe T M,Premaratne M,Agrawal G P.Low-loss dielectric-loaded graphene surface plasmon polariton waveguide basedbiochemical sensor[J].Journal of Applied Physics,2015,117(21):641-648.
    [5]Grodecki K,Bozek R,Strupinski W,et al.Raman spectroscopy on transition metals[J].Analytical&BioanAlytical Chemistry,2007,388(1):29-45.
    [6]Ortuno R,Garcíameca C,Rodríguezfortuno F J,et al.Modeling high-order plasmon resonances of a U-shaped nanowire used to build a negative-index metamaterial[J].Physical Review B,2009,79(7):075103.
    [7]Delgado V,Marqués R.Surface impedance model for extraordinary transmission in 1D metallic and dielectric screens[J].Optics Express,2011,19(25):25290-25297.
    [8]Fang Junfei,Deng Jianping,Zhang Pengchao.Enhancement of radiative properties of silver by surface structure with spherical resonant cavity[J].Infrared and Laser Engineering,2016,45(9):0916001.(in Chinese)
    [9]Rodrigo S G,Mahboub O,Degiron A,et al.Holes with very acute angles:a new paradigm of extraordinary optical transmission through strongly localized modes[J].Optics Express,2010,18(23):23691-23697.
    [10]Yao Chenggang,Li Jun,Li Long.Structural optimization of ring resonant cavity consisted with symmetry prisms[J].Infrared and Laser Engineering,2016,45(11):1118002.(in Chinese)
    [11]Chen J,Li Z,Lei M,et al.Broadband unidirectional generation of surface plasmon polaritons with dielectric film coated asymmetric single slit[J].Optics Express,2011,19(27):26463-26469.
    [12]Marani R,Marrocco V,Grande M,et al.Enhancement of extraordinary optical transmission in a double heterostructure plasmonic bandgap cavity[J].Plasmonics,2011,6(3):469-476.
    [13]Hou Y.Extremely high transmittance at visible wavelength induced by magnetic resonance[J].Plasmonics,2011,6(2):289-293.
    [14]Liu Jianping,Wang Lingling,Sun Bin,et al.Enhanced optical transmission through a nano-slit based on a dipole source and an annular nano-cavity[J].Opt Laser Technol,2015,69:71-76.
    [15]Subramania G,Foteinopoulou S,Brener I.Nonresonant broadband funneling of light via ultrasubwavelength channels[J].Physical Review Letters,2011,107(16):163902.
    [16]Pang S,Zhang Z,Qu S.Nonresonant enhanced optical transmission through the metallic circular nanohole arrays[J].Scientia Sinica,2014,44(2):142-149.(in Chinese)
    [17]Shen H,Maes B.Enhanced optical transmission through tapered metallic gratings[J].Applied Physics Letters,2012,100(24):241104.
    [18]Nooshnab V,Golmohammadi S.Revealing the effect of plasmon transmutation on charge transfer plasmons in substrate-mediated metallodielectric aluminum clusters[J].Optics Communications,2017,382:354-360.
    [19]Li Yihan,Zhang Mile,Cui Hailin,et al.Terahertz absorbing properties of different metal split-ring resonators[J].Infrared and Laser Engineering,2016,45(12):1225002.(in Chinese)
    [20]Qin Y,Cao W,Zhang Z Y.Enhanced optical transmission through metallic slits embedded with rectangular cavities[J].Acta Physica Sinica,2013,62(12):127302.(in Chinese)
    [21]AlùA,D′Aguanno G,Mattiucci N,et al.Plasmonic Brewster angle:broadband extraordinary transmission through optical gratings[J].Physical Review Letters,2011,106(12):123902.
    [22]Economou E N.Surface plasmons in thin films[J].Physical Review,1969,182(2):539-554.
    [23]Palik E D.Lithium Niobate(Li Nb O3)[J].Handbook of Optical Constants of Solids,1997,20(2):695-702.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700