极地船海水管道海水-冰晶两相流的换热特性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Heat transfer characteristics analysis of seawater and ice two-phase flow in the polar vessel seawater pipeline
  • 作者:徐立 ; 江焕宝 ; 黄振飞 ; 张来来 ; 汤冰
  • 英文作者:XU Li;JIANG Huanbao;HUANG Zhenfei;ZHANG Lailai;TANG Bing;Ministry of Education,Key Laboratory of High Performance Ship Technology ( Wuhan University of Technology);School of Energy and Power Engineering,Wuhan University of Technology;
  • 关键词:极地 ; 海水-冰晶 ; FLUENT ; 流速 ; 换热 ; 冰堵
  • 英文关键词:polar vessel;;seawater and ice;;FLUENT;;flow velocity;;heat transfer;;ice blocking
  • 中文刊名:HEBG
  • 英文刊名:Journal of Harbin Engineering University
  • 机构:高性能船舶技术教育部重点实验室(武汉理工大学);武汉理工大学能源与动力工程学院;
  • 出版日期:2017-03-30 14:57
  • 出版单位:哈尔滨工程大学学报
  • 年:2017
  • 期:v.38;No.248
  • 基金:国家自然科学基金项目(51479152)
  • 语种:中文;
  • 页:HEBG201706012
  • 页数:5
  • CN:06
  • ISSN:23-1390/U
  • 分类号:77-81
摘要
为了防止在极地低温的影响下,船舶海水冷却系统换热管道发生冰堵,保障船舶的航行安全,以海水冷却系统中水平换热管道为研究对象,热焓多孔介质模型为基础建立数学模型,利用CFD软件FLUENT对换热管道的海水-冰晶两相流体进行换热特性数值仿真。仿真结果表明流速对管道换热的影响显著。在以流速为被控量的管道两相流动过程中,为避免管道中冰晶堆积形成堵塞,需要选择合适的流速范围,以确保最优的换热效果,使船舶冷却水系统的正常换热,从而保证动力系统的正常运行。
        In order to prevent ice from jamming the heat-transfer pipe in the seawater cooling system of a vessel under the influence of polar temperatures and to safeguard the navigational safety of the ship,a mathematical model is constructed of the level heat-exchange pipeline in the seawater cooling system in the form of a porous-medium enthalpy model. The computational fluid dynamics software Fluent is used to simulate the heat-transfer characteristics of two-phase seawater/ice flow in the heat-transfer pipeline. The simulation results show that the flow rate has a significant effect on the heat transfer. To avoid ice accumulating and blocking the pipeline during such two-phase flow,it is necessary to select an appropriate range of flow rate to ensure optimal heat transfer. This facilitates normal heat transfer in the ship's cooling water system,thereby assuring normal operation of the power system.
引文
[1]Global Insight.Trends in the world economy and trade[C]//Publications of Global Insight.Waltham.2008.
    [2]WOODGATE R A,WEINGERTNER T,LINDSAY R.The2007 Bering Strait oceanic heat flux and anomalous arctic sea-ice retreat[J].Geophysical Research Letters,2010,37(L01602),doi:10.1029/2009GL041621.
    [3]孟上,李明,田忠翔,等.北极东北航道海冰变化特征分析研究[J].海洋预报,2013,30(2):8-13.MENG Shang,LI Ming,TIAN Zhongxiang,et al.Study on the characteristics of the change of sea ice in the northeast of the Arctic sea[J].Ocean forecast,2013,30(2):8-13.
    [4]谢正祥,江焕宝,徐立.北极地区航运风险管理策略[J].中国船检,2015(7):16-19.XIE Zhengxiang,JIANG Huanbao,XU Li.Arctic shipping risk management strategy[J].Chinese ship inspection,2015(7):16-19.
    [5]林宗虎.管式换热器中的单相流体强化传热技术[J].自然杂志,2013,35(5):313-319.LIN Zonghu.Single-phase fluid heat transfer enhancement technology in the tube heat exchanger[J].Nature magazine,2013,35(5):313-319.
    [6]付宜风,雷成旺,张璇,等.基于FLUENT的管道内壁表面状态对流体摩擦阻力的影响研究[J].润滑与密封,2014,39(5):23-27.FU Yifeng,LEI Chengwang,ZHANG Xuan,et al.Effect of pipeline inner surface features on fluid frictional resistance using FLUENT analysis[J].Lubrication and seal,2014,39(5):23-27.
    [7]HARUKI N,HORIBE A.Flow and heat transfer characteristics of ice slurries in a helically-coiled pipe[J].International journal of refrigeration,2013,36(4):1285-1293.
    [8]吴锡合,张德庆,张争伟.天然气长输管道冰堵的防治与应急处理[J].油气储运,2012,31(4):292-293.WU Xihe,ZHANG Deqing,ZHANG zhengwei.Prevention and emergency treatment of ice block in long distance natural gas pipeline.[J].Gas storage and transportation,2012,31(4):292-293.
    [9]郭春雨,李夏炎,谢畅,等.冰区航行船舶阻力预报方法[J].哈尔滨工程大学学报,2015,36(7):899-905.GUO Chunyu,LI Xiayan,XIE Chang,et al.Prediction method for icebreaker resistance[J].Journal of Harbin Engineering University,2015,36(7):899-905.
    [10]AI Y,FENG D,YE H,et al.Unsteady numerical simulation of flow around 2-D circular cylinder for high Reynolds numbers[J].Journal of marine science and application,2013,12(2):180-184.
    [11]DEL PUPPO N.High resolution ship hydrodynamics simulations in open source environment[J].Journal of marine science and application,2014,13(4):377-387.
    [12]王继红.冰浆的管道输送热流动特性[D].大连:大连理工大学,2013:93-100.WANG Jihong.Thermal-flow characteristics of ice slurry in pipelines[D].Dalian:Dalian University of Technology,2013:93-100.
    [13]杨丽媛.冰浆在管网中的流动及传热分析[D].华中科技大学,2012:39-42.YANG Liyuan.The flow and heat transfer analysis of ice slurry in the pipe network[D].Wuhan:Huazhong University of Science and Technology,2012:39-42.
    [14]ANTORANZ A,GONZALO A,FLORES O,et al.Numerical simulation of heat transfer in a pipe with non-homogeneous thermal boundary conditions[J].International journal of heat and fluid flow,2015,55:45-51.
    [15]GUO Chunyu,ZHANG Qi,SHEN Yu.A non-geometrically similar model for predicting the wake field of full-scale ships[J].Journal of marine science and application,2015,14(3):225-233.
    [16]GUO Chunyu,HU Wenting,HUANG Sheng.Using RANS to simulate the interaction and overall performance of propellers and rudders with thrust fins[J].Journal of marine science and application,2010,9(3):323-327.
    [17]GUO Chunyu,DOU Pengfei,JING Tao,et al.Simulation of hydrodynamic performance of drag and double reverse propeller podded propulsors[J].Journal of marine science and application,2016,15(1):16-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700