13.5 nm放电Xe等离子体极紫外光源
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:13.5 nm Extreme Ultraviolet Light Source Based on Discharge Produced Xe Plasma
  • 作者:赵永蓬 ; 徐强 ; 李琦 ; 王骐
  • 英文作者:Zhao Yongpeng;Xu Qiang;Li Qi;Wang Qi;National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology;College of Science, Northeast Forestry University;
  • 关键词:X射线光学 ; 极紫外光源 ; 放电等离子体 ; Xe ; 极紫外光刻
  • 英文关键词:X-ray optics;;EUV light source;;discharge produced plasma;;Xe;;EUV lithography
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:哈尔滨工业大学可调谐激光技术国家级重点实验室;东北林业大学理学院;
  • 出版日期:2018-11-10
  • 出版单位:中国激光
  • 年:2018
  • 期:v.45;No.503
  • 基金:国家自然科学基金重点项目(60838005);; 国家科技02重大专项子课题(2008ZX02501-001)
  • 语种:中文;
  • 页:JJZZ201811001
  • 页数:10
  • CN:11
  • ISSN:31-1339/TN
  • 分类号:7-16
摘要
搭建了极紫外光源实验装置,获得了中心波长为13.5 nm的Xe等离子体极紫外的辐射光谱。测量了极紫外辐射的时间特性,用多次箍缩理论解释了光脉冲的多峰结构。获得了主脉冲电流幅值、Xe气流量、陶瓷管内径、等离子体长度、辅助气体等实验参数对极紫外辐射强度的影响规律。搭建了重复频率为1 kHz的13.5 nm极紫外光源样机,介绍了样机的电源系统、放电系统、去碎屑系统和光收集系统的基本情况,并给出了光源样机的调试结果。
        The experimental setup of an extreme ultraviolet(EUV) light source is built. The EUV radiation spectrum with a central wavelength of 13.5 nm from the Xe plasma is obtained and the temporal characteristics are characterized. The multi-peak structure of a light pulse is clarified by the multiple pinch theory. The influence laws of the experimental parameters such as the current amplitude of main pulse, Xe flow rate, inner diameter of ceramic tube, plasma length, and auxiliary gas on EUV radiation intensity are obtained. In addition, a prototype of 13.5 nm EUV light source with a repetition rate of 1 kHz is built and its power supply system, discharge system, debris mitigation tool and collector system are described. The test results about the prototype are also given.
引文
[1] Kaiser N, Yulin S, Perske M, et al. High performance EUV multilayer optics[J]. Proceedings of SPIE, 2008, 7101: 71010Z.
    [2] Fomenkov I, Brandt D, Ershov A, et al. Light sources for high-volume manufacturing EUV lithography: Technology, performance, and power scaling[J]. Advanced Optical Technologies, 2017, 6(3/4): 173-186.
    [3] Hermans J V, Laidler D, Foubert P, et al. Progress in EUV lithography towards manufacturing from an exposure tool perspective[J]. Proceedings of SPIE, 2012, 8322: 832202.
    [4] Vieker J, Bergmann K. Influence of the electrode wear on the EUV generation of a discharge based extreme ultraviolet light source[J]. Journal of Physics D: Applied Physics, 2017, 50(34): 345601.
    [5] Klosner M A, Silfvast W T. Intense xenon capillary discharge extreme-ultraviolet source in the 10-16-nm-wavelength region[J]. Optics Letters, 1998, 23(20): 1609-1611.
    [6] Silfvast W T, Klosner M, Shimkaveg G, et al. High-power plasma discharge source at 13.5 nm and 11.4 nm for EUV lithography[J]. Proceedings of SPIE, 1999, 3676: 272-275.
    [7] Götze S, Ellwi S, Andrei■ Ž, et al. Time resolved diagnostics of plasmas in polyacetal ablative capillary discharges[J]. Physics Letters A, 2002, 299(5/6): 571-576.
    [8] Mohanty S R, Robert E, Dussart R, et al. A novel fast capillary discharge system emitting intense EUV radiation possible source for EUV lithography[J]. Microelectronic Engineering, 2003, 65(1/2): 47-59.
    [9] Teramoto Y, Sato H, Bessho K, et al. Development of Xe-filled capillary discharge extreme ultraviolet radiation source for semiconductor lithography[J]. Proceedings of SPIE, 2003, 5037: 767-775.
    [10] Song I, Iwata K, Homma Y, et al. A comparative study on the performance of a xenon capillary Z-pinch EUV lithography light source using a pinhole camera[J]. Plasma Sources Science and Technology, 2006, 15(3): 322-327.
    [11] Nowakowska-Langier K, Jakubowski L, Baronova E O, et al. Observations of extreme ultraviolet emission from plasma produced by capillary discharges[J]. The European Physical Journal D, 2009, 54(2): 377-382.
    [12] Stamm U. Extreme ultraviolet light sources for use in semiconductor lithography-state of the art and future development[J]. Journal of Physics D: Applied Physics, 2004, 37(23): 3244-3253.
    [13] Stamm U, Kleinschmidt J, Bolshukhin D, et al. Development status of EUV sources for use in Beta-tools and high-volume chip manufacturing tools[J]. Proceedings of SPIE, 2006, 6151: 61510O.
    [14] Partlow M J,Besen M M, Blackborow P A, et al. Extreme-ultraviolet light source development to enable pre-production mask inspection[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2012, 11(2): 021105.
    [15] Zhao Y P, Xu Q, Wang Q. Detection system for the state of Xe10+ ions in EUV-lithograph light source: CN201210164154.5[P]. 2012-05-24. 赵永蓬, 徐强, 王骐. 极紫外光刻光源Xe10+离子状态的检测系统: CN201210164154.5[P]. 2012-05-24.
    [16] Xu Q, Zhao Y P, Xie Y, et al. Effect of current on multiple pinches of Xe plasma in capillary discharge[J]. The European Physical Journal D, 2014, 68(3): 40.
    [17] Zhao Y P, Xu Q, Li Q, et al. Influence of plasma size on discharge extreme ultraviolet source[J]. High Power Laser and Particle Beams, 2013, 25(10): 2631-2635. 赵永蓬, 徐强, 李琦, 等. 等离子体尺寸对放电极紫外光源影响[J]. 强激光与粒子束, 2013, 25(10): 2631-2635.
    [18] Zhao Y P, Xu Q, Wang Q. A kind of medium and application system used in EUV-lithograph light source of discharge produced plasma: CN201210026159.1[P]. 2012-02-07. 赵永蓬, 徐强, 王骐. 一种用于放电等离子体极紫外光刻光源的介质及其应用系统: CN201210026159.1[P]. 2012-02-07.
    [19] Xu Q, Zhao Y P, Liu Y, et al. Effect of He/Ne/Ar on EUV emission and Xe plasma pumped by capillary discharge[J]. The European Physical Journal D, 2013, 67(6): 125.
    [20] Wang Q, Xu Q, Zhao Y P. Capillary-discharge-pumped EUV source system with Xe for inspection: CN201510084923.4[P]. 2015-02-16. 王骐, 徐强, 赵永蓬. Xe介质毛细管放电检测用极紫外光源系统: CN201510084923.4[P]. 2015-02-16.
    [21] Xu Q, Zhao Y P, Wang Q. A kind of capillary-discharge electrode used in light source of EUV lithograph: CN201610378862.7[P]. 2016-05-31. 徐强, 赵永蓬, 王骐. 一种用于毛细管极紫外光刻光源的放电电极: CN201610378862.7[P]. 2016-05-31.
    [22] Wang Q, Xu Q, Zhao Y P. Discharge chamber of capillary-discharge-pumped EUV light source with Xe for inspection: CN201510084937.6[P]. 2015-02-16. 王骐, 徐强, 赵永蓬. Xe介质毛细管放电检测用极紫外光源的放电室: CN201510084937.6[P]. 2015-02-16.
    [23] Zhao Y P, Xu Q, Wang Q. Debris mitigation tool in the light path of EUV-lithograph light source pumped by capillary discharge with Z pinch: CN201620569387.7[P]. 2016-06-13. 赵永蓬, 徐强, 王骐. 毛细管放电Z箍缩极紫外光刻光源光路中杂质过滤装置: CN201620569387.7[P]. 2016-06-13.
    [24] Zhu D Y, Zhao Y P, Xu Q, et al. Collector of EUV-lithograph light source pumped by capillary discharge with Z pinch: CN201610444231.0[P]. 2016-06-20. 祝东远, 赵永蓬, 徐强, 等. 毛细管放电Z箍缩极紫外光光刻光源的收集系统: CN201610444231.0[P]. 2016-06-20.
    [25] Zhao Y P, Xu Q, Wang Q. Directly rough turning method of light collector in EUV-lithograph light source: CN201310438498.5[P]. 2013-09-24. 赵永蓬, 徐强, 王骐. 极紫外光刻光源中光学收集镜直接车削加工粗加工方法: CN201310438498.5[P]. 2013-09-24.
    [26] Wang D L, Wang Q, Xu Q, et al. Method to increase the layer thickness of chemical plating Ni-P alloy with electrical pulse: CN201410062341.1[P]. 2014-02-24. 王殿龙, 王骐, 徐强, 等. 电脉冲提高化学镀镍磷合金层厚度的方法: CN201410062341.1[P]. 2014-02-24.
    [27] Xu Q, Zhao Y P, Wang Q. Directly precision turning method of light collector in EUV-lithograph light source: CN201310435460.2[P]. 2013-09-23. 徐强, 赵永蓬, 王骐. 极紫外光刻光源中光学收集镜直接车削加工精加工方法: CN201310435460.2[P]. 2013-09-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700