青海尕林格矽卡岩型铁矿金云母~(40)Ar/~(39)Ar年代学及成矿地质意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:~(40)Ar-~(39)Ar Geochronology of the Galinge Large Skarn Iron Deposit in Qinghai Province and Geological Significance
  • 作者:于淼 ; 丰成友 ; 刘洪川 ; 李定武 ; 赵一鸣 ; 李大新 ; 刘建楠 ; 王辉 ; 张明辉
  • 英文作者:YU Miao;FENG Chengyou;LIU Hongchuan;LI Dingwu;ZHAO Yiming;LI Daxin;LIU Jiannan;WANG Hui;ZHANG Minghui;Institute of Mineral Resources,CAGS;Peiking University;Qinghai Institute of Nonferrous Metal and Geological Exploration;Institute of Mineral Resources CAGS;The Eighth Branch,Inner Mongolia Bureau of Geology and Mineral Resources Exploration and Development;
  • 关键词:东昆仑 ; 祁漫塔格 ; 尕林格 ; 金云母 ; 40Ar/39Ar年代学
  • 英文关键词:East Kunlun;;Qiman Tagh;;Galinge;;phlogopite;;40Ar-39Ar geochronology
  • 中文刊名:DZXE
  • 英文刊名:Acta Geologica Sinica
  • 机构:中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室;北京大学地球与空间科学学院;青海省有色地质矿产勘查局地质矿产勘查院;内蒙古自治区第八地质矿产勘查开发院;
  • 出版日期:2015-03-15
  • 出版单位:地质学报
  • 年:2015
  • 期:v.89
  • 基金:国土资源部公益性行业科研专项经费项目(编号:201411025);; 青海省地质勘查基金项目(编号:201304);; 中国地质调查局地质调查项目(编号:1212011085528);; 中国地质调查局高层次地质人才培养计划(编号:201309);; 青年地质英才计划(编号:201112)资助的成果
  • 语种:中文;
  • 页:DZXE201503006
  • 页数:12
  • CN:03
  • ISSN:11-1951/P
  • 分类号:44-55
摘要
尕林格大型矽卡岩型铁多金属矿床位于东昆仑祁漫塔格盆山结合带中部,是祁漫塔格斑岩-矽卡岩成矿带内代表性矿床之一。因其地处盆地覆盖区、缺乏直接定年对象,一直未开展成矿年龄精细测定,制约了矿床成因和形成地球动力学过程的深入认识。本文采用40 Ar-39 Ar测年技术,获得尕林格矿区Ⅱ矿群磁铁矿矿石中金云母的40 Ar-39 Ar坪年龄为(235.8±1.7)Ma,等时线年龄为(234.1±3.7)Ma,反等时线年龄为(234.2±3.5)Ma。3组年龄数据在误差范围内完全一致,样品的坪年龄可以很好地代表尕林格矿床成矿年龄。结合区域成矿年龄数据表明,祁漫塔格成矿带在三叠纪存在大规模成矿作用,与花岗质岩浆活动有密切的成因联系。祁漫塔格带内强烈的岩浆活动和成矿作用是对三叠纪后碰撞伸展构造环境的响应,形成了构造-岩浆-成矿三位一体的时空体系。
        The Qiman Tagh metallogenic belt is one of the most important porphyry-skarn mineralization areas in China,which lies in the west of the East Kunlun orogenic belt.The Galinge deposit is one of the largest skarn iron polymetallic deposits in this belt.In this study,the ore-forming age is performed on the phlogopite using 40 Ar-39 Ar dating method,which yielded an isochron age of 234.1±3.7Ma,an inverse isochron age of 234.2±3.5Ma,and a plateau age of 235.8±1.7Ma.These three age data are highly consistent within error.Therefore,the plateau age can represent the mineralization time.The result from this study,as well as the previously reported data,indicates a large-scale Middle-Triassic mineralization in the Qiman Tagh metallogenic belt, which is closely related to the Middle-Triassic granodioritic magmatism,and can be explained as a response to the regional post-collisional extension.
引文
陈丹玲,刘良,车自成,罗金海,张云翔.2001.祁漫塔格印支期铝质A型花岗岩的确定及初步研究.地球化学,30(6):540~546.
    陈文,张彦,张岳桥,金贵善,王清利.2006.青藏高原东南缘晚新生代幕式抬升作用的Ar—Ar热年代学证据.岩石学报,22(4):867~872.
    谌宏伟,罗照华,莫宣学,刘成东,柯珊.2005.东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制.中国地质,32(3):386~395.
    邓晋福,莫宣学.1998.壳—幔物质与深部过程.地学前缘,5(3):67~74.
    丰成友,李东生,屈文俊,杜安道,王松,苏生顺,江军华.2009.青海祁漫塔格索拉吉尔矽卡岩型铜钼矿床辉钼矿铼-锇同位素定年及其地质意义.岩矿测试,28(3):223~227.
    丰成友,王松,李国臣,马圣钞,李东生.2012.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义.岩石学报,28(2):665~678.
    丰成友,王雪萍,舒晓峰,张爱奎,肖晔,刘建楠,马圣钞,李国臣,李大新.2011a.青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义.吉林大学学报(地球科学版),41(6):1806~1817.
    丰成友,张大权,李东生,孙艳,李国臣,马圣钞.2010.青海祁漫塔格地区成矿规律研究.矿床地质,28(S1):3~4.
    丰成友,赵一鸣,李大新,刘建楠,肖晔,李国臣,马圣钞.2011b.青海西部祁漫塔格地区矽卡岩型铁铜多金属矿床的矽卡岩类型和矿物学特征.地质学报,85(7):1108~1115.
    高晓峰,校培喜,谢从瑞,过磊,董增产,奚仁刚,康磊.2010.祁漫塔格地区构造—岩浆作用与成矿.西北地质,43(4):119~123.
    高永宝,李文渊,张照伟.2009.祁漫塔格地区成矿地质特征及潜力分析.矿物学报,29(S1):393~394.
    何书跃,李东生,李良林,祁兰英,何寿福.2009.青海东昆仑鸭子沟斑岩型铜(钼)矿区辉钼矿铼—锇同位素年龄及地质意义.大地构造与成矿学,33(2):236~242.
    何书跃,祁兰英,舒树兰,尹和珍,何寿福,景向阳.2008.青海祁漫塔格地区斑岩铜矿的成矿条件和远景.地质与勘探,(2):14~22.
    侯增谦.2010.大陆碰撞成矿论.地质学报,84(1):30~58.
    姜春发,杨经绥,冯秉贵.1992.昆仑开合构造.北京:地质出版社.
    李世金,孙丰月,丰成友,刘振宏,赵俊伟,李玉春,王松.2008.青海东昆仑鸭子沟多金属矿的成矿年代学研究.地质学报,82(7):949~955.
    刘成东,莫宣学,罗照华,喻学惠,谌宏伟,李述为,赵欣.2004.东昆仑壳—幔岩浆混合作用:来自锆石SHRIMP年代学的证据.科学通报,49(6):596~602.
    刘建楠,丰成友,赵一鸣,李大新,肖晔,周建厚,马永寿.2013.青海野马泉矽卡岩铁锌多金属矿区侵入岩—交代岩及矿化蚀变特征.矿床地质,32(1):77~93.
    刘云华,莫宣学,喻学惠,张雪亭,许国武.2006.东昆仑野马泉地区景忍花岗岩锆石SHRIMPU—Pb定年及其地质意义.岩石学报,22(10):2457~2463.
    罗照华,柯珊,曹永清,邓晋福,谌宏伟.2002.东昆仑印支晚期幔源岩浆活动.地质通报,21(6):292~297.
    毛景文,周振华,丰成友,王义天,张长青,彭惠娟,于淼.2012.初论中国三叠纪大规模成矿作用及其动力学背景.中国地质,39(6):1437~1471.
    莫宣学,刘军培,张爱奎,刘光莲,张文权,陈海福,李云平.2012.青海祁漫塔格晚古生代一早中生代侵入岩构造背景与成矿关系.西北地质,45(1):9~19.
    佘宏全,张德全,景向阳,关军,朱华平,丰成友,李大新.2007.青海省乌兰乌珠尔斑岩铜矿床地质特征与成因.中国地质,34(2):306~314.
    谭文娟,姜寒冰,杨合群,高永宝.2011.祁漫塔格地区铁多金属矿床成矿特征及成因探讨.地质与勘探,47(2):244~250.
    唐菊兴,张丽,黄勇,王成辉,李志军,邓起,郎兴海,王友.2009.西藏谢通门县雄村铜金矿主要地质体的40Ar/39Ar年龄及地质意义.矿床地质,28(6):759~769.
    田承盛,丰成友,李军红,曹德智.2013.青海它温查汉铁多金属矿床40Ar-39Ar年代学研究及意义.矿床地质,32(1):169~176.
    田军,张克信,龚一鸣,王国灿.2001.东昆仑造山带海西-印支期东昆南前陆盆地构造岩相古地理.现代地质,15(1):21~26.
    王非,师文贝,朱日祥.2014.40 Ar/39 Ar年代学中几个重要问题的讨论.岩石学报,30(2):326~340.
    王富春,陈静,谢志勇,李善平,谈生祥,张玉宝,王涛.2013.东昆仑拉陵灶火钼多金属矿床地质特征及辉钼矿Re-Os同位素定年.中国地质,40(4):1209~1217.
    王松,丰成友,李世金,江军华,李东生,苏生顺.2009.青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩SHRIMPU—Pb测年及其地质意义.中国地质,36(1):74~84.
    吴祥珂,孟繁聪,许虹,崔美慧.2012.青海祁漫塔格玛兴大坂晚三叠世花岗岩年代学,地球化学及Nd-Hf同位素组成.岩石学报,27(11):3380~3394.
    奚仁刚,校培喜,伍跃中,董增产,过磊,高晓峰.2011.东昆仑肯德可克铁矿区二长花岗岩组成,年龄及地质意义.西北地质,43(4):195~202.
    肖晔,丰成友,刘建楠,于淼,周建厚,李大新,赵一鸣.2013.青海肯德可克铁多金属矿区年代学及硫同位素特征.矿床地质,32(1):177~186.
    许志琴,杨经绥,李海兵,张建新,曾令森,姜枚.2006.青藏高原与大陆动力学———地体拼合,碰撞造山及高原隆升的深部驱动力.中国地质,33(2):221~238.
    杨经绥,许志琴,李海兵,史仁灯.2005.东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系.岩石矿物学杂志,24(5):369~380.
    殷鸿福,张克信.1997.东昆仑造山带的一些特点.地球科学:中国地质大学学报,22(4):339~342.
    于淼.2013.青海尕林格铁矿矽卡岩矿物学及矿化蚀变分带特征研究.北京:中国地质大学(北京),硕士论文.
    于淼,丰成友,赵一鸣,李大新,刘建楠,肖晔,李国臣,马圣钞.2013.青海尕林格铁矿床矽卡岩矿物学及蚀变分带.矿床地质,32(1):55~76.
    袁顺达,刘晓菲,王旭东,吴胜华,原垭斌,李雪凯,王铁柱.2012.湘南红旗岭锡多金属矿床地质特征及Ar-Ar同位素年代学研究.岩石学报,28(12):3787.
    张爱奎.2012.青海野马泉地区晚古生代-早中生代岩浆作用与成矿研究.北京:中国地质大学(北京).
    张德全,党兴彦,余宏全,李大新,丰成友,李进文.2005.柴北缘-东昆仑地区造山型金矿床的Ar-Ar测年及其地质意义.矿床地质,24(2):87~98.
    张彦,陈文,陈克龙,刘新宇.2006.成岩混层(I/S)Ar-Ar年龄谱型及39 Ar核反冲丢失机理研究———以浙江长兴地区P-T界线粘土岩为例.地质论评,52(4):556~561.
    赵一鸣,丰成友,李大新,刘建楠,肖晔,于淼,马圣钞.2013.青海西部祁漫塔格地区主要矽卡岩铁多属矿床成矿地质背景和矿化蚀变特征.矿床地质,32(1):1~19.
    Arnaud N O and Kelley S P,1995.Evidence for excess argon duringhigh pressure metamorphism in the Dora Maira Massif(westernAlps,Italy),using an ultra-violet laser ablation microprobe39 Ar-40 Ar technique.Contributions to Mineralogy andPetrology,121(1):1~11.
    Burgess R,Taylor R P,Fallick A E,Kelley S P,1992.40 Ar/39 Arlaser microprobe study of fluids in different colour zones of ahydrothermal scheelite crystal from the DaeHwa W-Mo mine,South Korea.Chemical geology,102(1):259~267.
    Collins W J,Beams S D,White A J R,Chappell B W,1982.Natureand origin of A-type granites with particular reference tosoutheastern Australia.Contributions to Mineralogy andPetrology,80(2):189~200.
    Dallmeyer R D,1979.40 Ar/39 Ar Dating:Principles,Techniques,and Applications in Orogenic TerranesLectures in isotopegeology.Springer,pp.77~104.
    Frost C D and Frost B R,2010.On ferroan(A-type)granitoids:their compositional variability and modes of origin.Journal ofPetrology:q70.
    Harrison T M and McDougall I,1981.Excess 40 Ar in metamorphicrocks from Broken Hill,New South Wales:implications for40 Ar/39 Ar age spectra and the thermal history of the region.Earth and Planetary Science Letters,55(1):123~149.
    Heizler M T and Harrison T M,1988.Multiple trapped argonisotope components revealed by 39 Ar-40 Ar isochron analysis.Geochimicaet Cosmochimica Acta,52(5):1295~1303.
    Kelley S,2002.Excess argon in K-Ar and Ar-Ar geochronology.Chemical Geology,188(1):1~22.
    Lanphere M A and Dalrymple G B,1976.Identification of excess40 Ar by the 40 Ar/39 Ar age spectrum technique.Earth andPlanetary Science Letters,32(2):141~148.
    Lee J K,1995.Multipath diffusion in geochronology.Contributionsto Mineralogy and Petrology,120(1):60~82.
    Liégeois J,1998.Some words on the post-collisional magmatism.Lithos,45:15~18.
    Lovera O M,Grove M,Harrison T M,2002.Systematic analysis ofK-feldspar 40 Ar/39 Ar step heating results II:relevance oflaboratory argon diffusion properties to nature.GeochimicaetCosmochimicaActa,66(7):1237~1255.
    Ludwig K R,2001.User’s manual for Isoplot/Ex v.2.47.Ageochronological toolkit for Microsoft Excel.BGC SpecialPublication 1a,Berkeley,55p.
    Maheo G,Guillot S,Blichert-Toft J,Rolland Y,Pecher A,2002.A slab breakoff model for the Neogene thermal evolution ofSouth Karakorum and South Tibet.Earth and Planetary ScienceLetters,195(1-2):45~58.
    Mazor E and Truesdell A H,1984.Dynamics of a geothermal fieldtraced by noble gases:Cerro Prieto,Mexico.Geothermics,13(1):91~102.
    McDougall I and Harrison T M,1999.Geochronology andthermochronology by the 40 Ar/39 Ar Method.Oxford UniversityPress.
    Merrihue C and Turner G,1966.Potassium-argon dating byactivation with fast neutrons.Journal of Geophysical Research,71(11):2852~2857.
    Miller C,Schuster R,Klotzli U,Frank W,Purtscheller F,1999.Post-collisional potassic and ultrapotassic magmatism in SWTibet:Geochemical and Sr-Nd-Pb-O isotopic constraints formantle source characteristics and petrogenesis.Journal ofPetrology,40(9):1399~1424.
    Nier A O,1950.A redetermination of the relative abundances of theisotopes of carbon,nitrogen,oxygen,argon,and potassium.Physical Review,77(6):789.
    Parsons I,Brown W L,Smith J V,1999.40 Ar/39 Arthermochronology using alkali feldspars:real thermal history ormathematical mirage of microtexture?Contributions toMineralogy and Petrology,136(1-2):92~110.
    Reddy S M,Kelley S P,Magennis L,1997.A microstructural andargon laserprobe study of shear zone development at the westernmargin of the Nanga Parbat-Haramosh massif,westernHimalaya.Contributions to mineralogy and Petrology,128(1):16~29.
    Renne P R,Sharp W D,Deino A L,OrsiGCivetta L,1997.40 Ar/39 Ar dating into the historical realm:calibration against Plinythe Younger.Science,277(5330):1279~1280.
    Roddick J C,1978.The application of isochron diagrams in 40 Ar-39 Ar dating:A discussion.Earth and Planetary ScienceLetters,41(2):233~244.
    Shelton K L,Taylor R P,So C,1987.Stable isotope studies of theDaeHwa tungsten-molybdenum mine,Republic of Korea;evidence of progressive meteoric water interaction in a tungstenbearing hydrothermal system.Economic Geology,82(2):471~481.
    Steiger R H and Jger E,1977.Subcommission on geochronology:convention on the use of decay constants in geo-andcosmochronology.Earth and planetary science letters,36(3):359~362.
    Stuart F M,Burnard P G,Taylor R E ATurner G,1995.Resolvingmantle and crustal contributions to ancient hydrothermal fluids:He+Ar isotopes in fluid inclusions from DaeHwa W+Momineralisation,South Korea.Geochimica et CosmochimicaActa,59(22):4663~4673.
    Torgersen T,Kennedy B M,Hiyagon H,Chiou K Y,Reynolds JH,Clarke W B,1989.Argon accumulation and the crustaldegassing flux of 40 Ar in the Great Artesian Basin,Australia.Earth and Planetary Science Letters,92(1):43~56.
    Turner S,Hawkesworth C,Liu J,Rogers N,Kelley S,vanCalsteren P,1993.Timing of Tibetan uplift constrained byanalysis of volcanic rocks.Nature,364(6432):50~54.
    Wang F,Zhu R,Yang L,He H,Lo C,2008.40 Ar/39 Ar analyseson Quaternary K-Ar standard BB-24:Evaluations.International Journal of Mass Spectrometry,270(1):16~22.
    Wartho J,Kelley S P,Brooker R A,Carroll M R,Villa I M,Lee MR,1999.Direct measurement of Ar diffusion profiles in a gemquality Madagascar K-feldspar using the ultra-violet laserablation microprobe(UVLAMP).Earth and Planetary ScienceLetters,170(1):141~153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700