2008特大冰冻灾害后大明山常绿阔叶林林冠结构动态
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Short-term dynamics of canopy structure of evergreen broadleaved forest after a freezing disaster in 2008 in Damingshan,Southern China
  • 作者:周晓果 ; 温远光 ; 朱宏光 ; 王磊
  • 英文作者:ZHOU Xiaoguo;WEN Yuanguang;ZHU Hongguang;WANG Lei;Guangxi Key Laboratory of Forest Ecology and Conservation,College of Forestry,Guangxi University;State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources;Gangxi Youyiguang Forest Ecosysterm Research Station;
  • 关键词:常绿阔叶林 ; 叶面积指数 ; 林冠覆盖度 ; 林冠体积 ; 上/下冠盖比 ; 动态
  • 英文关键词:evergreen broadleaved forest;;leaf area index;;canopy cover;;canopy volume;;ratio of high to low cover;;dynamics
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:广西大学林学院,广西木林生态与保育重点实验室培育基地;亚热带农业生物资源保护与利用国家重点实验室;广西友谊关森林生态系统定位观测研究站;
  • 出版日期:2017-02-23
  • 出版单位:生态学报
  • 年:2017
  • 期:v.37
  • 基金:国家自然科学基金项目(31460121,39460022,30860059);; 广西研究生教育创新计划项目(YCBZ2014008)
  • 语种:中文;
  • 页:STXB201704009
  • 页数:10
  • CN:04
  • ISSN:11-2031/Q
  • 分类号:80-89
摘要
林冠结构是研究森林生态系统众多关键生态功能和过程的重要参数,常绿阔叶林是亚热带林区具有代表性的森林类型,对其林冠结构及动态特征的研究还很不深入。在广西大明山中山区选择了一个斜坡水平长200 m、宽160 m的典型坡面,在整个坡面建立了80个20 m×20 m的样地,将样地均匀分为5个坡段,每个坡段包含16个连续的样地,在2009—2012年的生长季测定了林冠高度(CH)、林冠体积(CV)、林冠覆盖度(CC)、林冠上/下冠盖比(HLr)和林冠叶面积指数(LAI),分析了各林冠结构指标的坡位及年际动态,揭示了亚热带常绿阔叶林的林冠结构特征及短期动态规律。研究结果表明,大明山常绿阔叶林林冠结构的一般特征是:平均CH(12.09±0.05)m,平均CV(2642.51±278.33)m~3(每400 m~2样地),平均CC(59.90±3.29)%,平均HLr2.48±0.23,平均LAI 2.00±0.06。大明山常绿阔叶林的林冠结构存在多层性,上层林冠覆盖度平均为42.20%,中层为30.35%,下层为18.05%。大明山常绿阔叶林的林冠结构存在坡面和年际差异,坡面变异系数为CV(29.84%—55.89%)>HLr(32.90%—53.52%)>LAI(22.48%—43.89%)>CC(16.61%—25.74%)>CH(8.26%—12.77%);年际变异系数为HLr(47.33%—57.00%)>CV(39.70%—49.06%)>LAI(21.58%—48.13%)>CC(20.35%—24.15%)>CH(9.19%—12.59%),表明CH有较强的稳定性。林冠LAI存在明显的坡面尺度效应,即向下顺坡每滑动100 m冠层LAI升高0.34。坡位对CH、HLr有显著(P=0.022)和极显著(P<0.001)影响;年份对HLr有显著影响(P=0.013),对CV和CC有极显著影响(P<0.001);坡位×年份对CV和LAI的交互作用显著(P=0.016,P=0.017)。回归分析发现树冠面积与林木胸径呈极显著的线性关系。此研究结果表明大明山常绿阔叶林冠层高度较低、林冠体积较小、林冠覆盖度不高、上/下冠盖比和叶面积指数偏小,这与研究区域的海拔较高(934—1223 m),土层浅薄(30—45 cm)以及经常受到冰冻灾害(特别是2008年的特大冰冻灾害)的影响有关,是山地常绿阔叶林树冠结构与山地环境条件长期适应的结果。
        Canopy structure and dynamics are critical components in the functioning and key ecological processes of forest ecosystems. Evergreen broadleaved forests are the representative community type in the subtropics,but the characteristic of canopy structure of this forest is poorly understood. In the present study,80 permanent plots( 20 m × 20 m for each plot) on a typical slope( 200 m × 160 m) in the mid-mountain region of Damingshan Mountain were built and equally divided into 5 groups on the slope( 16 continuous plots on each slope segment). In order to reveal the feature and short-term dynamic regulation of the canopy structure in this evergreen broadleaved forest,we investigated and analyzed the slope effects and annual dynamics of canopy structure indexes,including canopy height( CH),canopy volume( CV),canopy cover( CC),ratio of high to low cover( HLr) and leaf area index( LAI) during the growing seasons from 2009 to 2012.Mean CH,CV,CC,HLr,and LAI of this evergreen broadleaved forest averaged( 12.09±0.05) m,( 2642.51±278.33) m~3( in each plot),( 59.90±3.29) %,2.48±0.23,and 2.00±0.06,respectively. The canopy structure was multilayered with CC averaging 42.20% in the upper layer,30.35% in the middle layer,and 18.05% in the lower layers. Meanwhile,the canopy structure showed differences between slopes and growth years. For different slopes,the coefficient of variation of the index ranked as follows: CV( 29. 84% —55. 89%) > HLr( 32. 90% —53. 52%) > LAI( 22. 48% —43. 89%) > CC( 16.61%—25.74%) > CH( 8.26%—12.77%). For different growth years,the coefficient of variation of the index ranked as HLr( 47.33% —57.00%) > CV( 39.70% —49.06%) > LAI( 21.58% —48.13%) > CC( 20.35% —24.15%) > CH( 9.19%—12.59%),showing that CH had relatively strong stability. We found significant effects of slope scale on LAI with an elevation of 0.34 when sliding down 100 m in the downslope direction. The results of two-way ANOVAs showed that slope position had significant and extremely significant effects on CH( P = 0.022) and HLr( P<0.001),respectively,while year of growth had significant effects on HLr( P = 0.013) and extremely significant effects on CV and CC( both P<0.001). The interaction effects of slope × year on CV and LAI were significant( P = 0. 016 and P = 0. 017,respectively). Correlation analysis showed that there was extremely significant positive correlation between DBH and canopy area. Our results indicated that the canopy structure of evergreen broadleaved forests on Damingshan Mountain have the characteristics of relatively lower CH,CC,HLr,and LAI,and smaller CV. This could be attributed to the relatively higher elevation( 934—1223m),shallow soil( 30—45 cm),and the frequency of freezing disturbances,especially the severe ice storm damage in 2008 on Damingshan Mountain. This could also be the result of the long-term adaptation of canopy structure in montane evergreen broadleaved forest to environmental conditions.
引文
[1]Pan Y D,Birdsey R A,Phillips O L,Jackson R B.The structure,distribution,and biomass of the world's forests.Annual Review of Ecology,Evolution,and Systematics,2013,44:593-622.
    [2]Leiterer R,Furrer R,Schaepman M E,Morsdorf F.Forest canopy-structure characterization:A data-driven approach.Forest Ecology and Management,2015,358:48-61.
    [3]Lowman M D,Rinker H B.Forest Canopies.2nd ed.London:Elsevier Academic Press,2004.
    [4]Lowman M D,Schowalter T D.Plant science in forest canopies-the first 30 years of advances and challenges(1980-2010).New Phytologist,2012,194(1):12-27.
    [5]Franklin J F,Van Pelt R.Spatial aspects of structural complexity in old-growth forests.Journal of Forestry,2004,102(3):23-28.
    [6]Hansen A J,Phillips L B,Dubayah R,Goetz S,Hofton M.Regional-scale application of lidar:Variation in forest canopy structure across the southeastern US.Forest Ecology and Management,2014,329:214-226.
    [7]Mc Elhinny C,Gibbons P,Brack C,Bauhus J.Forest and woodland stand structural complexity:Its definition and measurement.Forest Ecology and Management,2005,218(1/3):1-24.
    [8]Hopkin M.Biodiversity and climate form focus of forest canopy plan.Nature,2005,436(7050):452-452.
    [9]Stork N E.Editorial:dynamics and processes in the canopy of an Australian tropical rainforest.Austral Ecology,2007,32(1):2-3.
    [10]Brodersen C,Pohl S,Lindenlaub M,Leibundgut C,Von Wilpert K.Influence of vegetation structure on isotope content of throughfall and soil water.Hydrological Processes,2000,14(8):1439-1448.
    [11]Hobbie S E.Effects of plant species on nutrient cycling.Trends in Ecology&Evolution,1992,7(10):336-339.
    [12]Frolking S,Palace M W,Clark D B,Chambers J Q,Shugart H H,Hurtt G C.Forest disturbance and recovery:A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure.Journal of Geophysical Research,2009,114(G2):G00E02.
    [13]Asner G P,Powell G V N,Mascaro J,Knapp D E,Clark J K,Jacobson J,Kennedy-Bowdoin T,Balaji A,Paez-Acosta G,Victoria E,Secada L,Valqui M,Hughes R F.High-resolution forest carbon stocks and emissions in the Amazon.Proceedings of the National Academy of Sciences of the United States of America,2010,107(38):16738-16742.
    [14]Whitehurst A S,Swatantran A,Blair J B,Hofton M A,Dubayah R.Characterization of canopy layering in forested ecosystems using full waveform Li DAR.Remote Sensing,2013,5:2014-2036.
    [15]Gao T,Hedblom M,Emilsson T,Nielsen A B.The role of forest stand structure as biodiversity indicator.Forest Ecology and Management,2014,330:82-93.
    [16]Graf R,Mathys L,Bollmann K.Habitat assessment for forest dwelling species using Li DAR remote sensing:Capercaillie in the Alps.Forest Ecology and Management,2009,257(1):160-167.
    [17]Parker G G,Smith A P,Hogan K P.Access to the upper forest canopy with a large tower crane.Bio Science,1992,42(9):664-670.
    [18]吴毅,刘文耀,宋亮,陈曦,卢华正,李苏,石贤萌.基于林冠塔吊的附生植物生态学研究进展.植物生态学报,2016,40(5):508-522.
    [19]王云霓,邓秀秀,王彦辉,曹恭祥,于澎涛,熊伟,徐丽宏.六盘山南坡华北落叶松人工林冠层LAI的坡面尺度效应.生态学报,2016,36(12):3564-3571.
    [20]刘志理,戚玉娇,金光泽.小兴安岭谷地云冷杉林叶面积指数的季节动态及空间格局.林业科学,2013,49(8):58-64.
    [21]苏宏新,白帆,李广起.3类典型温带山地森林的叶面积指数的季节动态:多种监测方法比较.植物生态学报,2012,36(3):231-242.
    [22]陈夏,桑卫国.暖温带地区3种森林群落叶面积指数和林冠开阔度的季节动态.植物生态学报,2007,31(3):431-436.
    [23]李根柱,王贺新,朱教君.辽东次生林区主要阔叶林型叶面积指数季节动态.生态学杂志,2008,27(12):2049-2055.
    [24]吕瑜良,刘世荣,孙鹏森,张国斌,张瑞蒲.川西亚高山暗针叶林叶面积指数的季节动态与空间变异特征.林业科学,2007,43(8):1-7.
    [25]童鸿强,王玉杰,王彦辉,于澎涛,熊伟,徐丽宏,周杨.六盘山叠叠沟华北落叶松人工林叶面积指数的时空变化特征.林业科学研究,2011,24(1):13-20.
    [26]张佳宁,袁金国,张莎.2002-2011年河北省植被LAI时空变化特征.南京林业大学学报:自然科学版,2015,39(1):88-92.
    [27]曼兴兴,米湘成,马克平.雪灾对古田山常绿阔叶林群落结构的影响.生物多样性,2011,19(2):197-205.
    [28]苏志尧,刘刚,区余端,戴朝晖,李镇魁.车八岭山地常绿阔叶林冰灾后林木受损的生态学评估.植物生态学报,2010,34(2):213-222.
    [29]巩合德,杨国平,张一平,刘玉洪,郑征,甘建民.哀牢山4类植物群落叶面积指数比较.东北林业大学学报,2007,35(3):34-36.
    [30]区余端,苏志尧.粤北山地常绿阔叶林自然干扰后冠层结构空间异质性动态.植物科学学报,2012,30(3):223-229.
    [31]温远光,元昌安,李信贤,和太平,赖家业,黄棉.大明山中山植被恢复过程植物物种多样性的变化.植物生态学报,1998,22(1):33-40.
    [32]温远光,和太平,谭伟福.广西热带和亚热带山地的植物多样性及群落特征.北京:气象出版社,2004.
    [33]温远光,李婉舒,朱宏光,周晓果,叶铎,王磊.特大冰冻干扰对大明山常绿阔叶林树冠及林冠层状况的影响.广西科学,2014,21(5):454-462.
    [34]崔佳玉,曾焕忱,王永强,张毅,胡益珩,苏志尧.银瓶山自然保护区阔叶林冠层结构与辐射消减效应.西北林学院学报,2015,30(4):45-49.
    [35]温远光.连栽桉树人工林植物多样性与生态系统功能关系的长期实验研究.成都:四川大学,2006.
    [36]朱宏光,李燕群,温远光,梁宏温,林建勇,农友.特大冰冻灾害后大明山常绿阔叶林结构及物种多样性动态.生态学报,2011,13(19):5571-5577.
    [37]温远光,林建勇,朱宏光,周晓果,叶铎,王磊.南亚热带山地常绿阔叶林林隙及其自然干扰特征研究.广西科学,2014,21(5):447-453.
    [38]Asner G P,Scurlock J M O,Hicke J A.Global synthesis of leaf area index observations:Implications for ecological and remote sensing studies.Global Ecology and Biogeography,2003,12(3):191-205.
    [39]Waring R H,Running S W.Forest Ecosystems:Analysis at Multiple Scales.3rd ed.Burlington:Elsevier Academic Press,2007.
    [40]Hemery G E,Savill P S,Pryor S N.Applications of the crown diameter-stem diameter relationship for different species of broadleaved trees.Forest Ecology and Management,2005,215(1/3):285-294.
    [41]张丽楠,王得祥,郝亚中,柴宗政,张洋,吴昊.陕西宁东林业局华北落叶松人工林最适经营密度研究.西北林学院学报,2013,28(1):146-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700