往复位移作用下整体桥台后土压力计算方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Method to Calculate Earth Pressure of Backfill of Integral Abutment Bridges Under the Action of Reciprocating Longitudinal Displacement
  • 作者:林上顺 ; 林友炜 ; 黄福云 ; 陈伟 ; 董锐 ; 庄一舟
  • 英文作者:LIN Shang-shun;LIN You-wei;HUANG Fu-yun;CHEN Wei;DONG Rui;ZHUANG Yi-zhou;School of Civil Engineering, Fujian University of Technology;School of Civil Engineering, Fuzhou University;
  • 关键词:桥梁工程 ; 台后土压力 ; 拟静力 ; 整体桥 ; 计算方法 ; 桥台-桩基-土相互作用
  • 英文关键词:bridge engineering;;earth pressure behind abutment;;pseudo-static;;IAJB;;calculation method;;interaction of abutment-pile-soil
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:福建工程学院土木工程学院;福州大学土木工程学院;
  • 出版日期:2019-02-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:v.32;No.186
  • 基金:国家自然科学基金项目(51578161,51778147);; 福建省高校优秀人才支持计划项目(50011504);; 福州市科技局项目(2016-G-62)
  • 语种:中文;
  • 页:ZGGL201902013
  • 页数:10
  • CN:02
  • ISSN:61-1313/U
  • 分类号:120-129
摘要
整体桥具有使用寿命长、施工方便、造价及养护费用低等特点,目前在国内外得到了广泛应用与推广,但是,其台后土压力计算方法还缺乏深入研究。为此,以永春上坂大桥整体桥为设计背景,开展了整体式桥台-H形钢桩-土相互作用的低周往复荷载拟静力试验研究,主要研究了台后土压力大小及其衰减规律,并给出了桥台内力和台后土压力计算方法。研究结果表明:台后土压力与正向加载位移成非线性关系,且随着正向加载位移的增大而增大;台后土压力沿深度方向主要呈"三角形"与"梯形"分布,同时,台背处土压力合力作用点基本位于2/3桥台高度的埋深位置处;台后土压力沿纵桥向成指数衰减,且在台后2倍的桥台高度处基本衰减为0,即温度作用下整体桥桥台的纵向移动仅对台后2倍桥台高度范围内的土体有影响。现有研究及规范给出的方法不适用于整体桥的台后土压力计算,而所提出的台后土压力计算方法与试验、实桥监测结果较为吻合,其可为整体桥的设计及规范的制定提供参考与借鉴。
        The integral abutment jointless bridge(IAJB) has many desirable characteristics such as long service life, convenient construction, and low building and maintenance costs. It has thus been widely used and applied both in China and worldwide. However, the method to calculate the earth pressure of the backfill behind an integral abutment requires further investigation. Therefore, considering an integral abutment bridge in China, a reciprocating low-cycle pseudo-static test was carried out to determine the integral abutment-H-shaped steel pile-soil interaction. The mechanical behavior and decaying law of the earth pressure behind the abutment were evaluated, and methods to calculate the abutment internal force and earth pressure coefficient were proposed. The results show that a nonlinear relationship exists between the earth pressure behind the abutment and the loading displacement for the longitudinal forward-abutment direction; furthermore, the earth pressure increases with the increase in the loading displacement of the forward-abutment. The earth pressure behind the abutment exhibits primarily triangular and trapezoidal distributions along the depth direction. Meanwhile, the position of the resultant force for the abutment is located at a depth of two-thirds the height of abutment. It was also noted that the earth pressure is exponentially attenuated along the longitudinal bridge and decreases to nearly zero at an abutment height of two times that behind the abutment. This means that the longitudinal movement of the abutment of the IAJB, under the effect of temperature, affects only the backfill of the abutment within the range of two times the abutment height. The calculation shows that the methods recommended by the specification are not appropriate for the calculation of the earth pressure of the IAJB. The results obtained using the proposed method to calculate the earth pressure behind the abutment demonstrate good agreement with the test and the bridge monitoring results, and the proposed method can thus be used as a reference for the design of IAJB and the formulation of the specification.
引文
[1] 陈宝春,庄一舟,BRISEGHELLA B.无伸缩缝桥梁[M].北京:人民交通出版社,2013. CHEN Bao-chun, ZHUANG Yi-zhou, BRISEGHELLA B. Jointless Bridges [M]. Beijing: China Communications Press, 2013.
    [2] DICLELI M. A Rational Design Approach for Prestressed-concrete-girder Integral Bridges[J]. Engineering Structures, 2000, 22 (3): 230-245.
    [3] GEORGE L, NEIL C M, DAVID I. Integral Bridges: A Fundamental Approach to the Time Temperature Loading Problem [M]. London: Thomas Telford Ltd, 2000.
    [4] ALIZADEH M H, KHALIM R A R, CHIK Z, et al. Investigation of Abutment Displacement of a Full Height Integral Bridges in Dense Granule Backfill [J]. American Journal of Engineering and Applied Sciences, 2010, 3 (4): 749-756.
    [5] BARKER R M, DUNCAN J M, ROJIANI K B, et al. Manuals for the Design of Bridge Foundations: Shallow Foundations, Driven Piles, Retaining Walls and Abutments, Drilled Shafts, Estimating Tolerable Movements, Load Factor Design Specifications, and Commentary [M]. Washington DC: Transportation Research Board, 1991.
    [6] FANG H Y. Foundation Engineering Handbook [M]. 2nd ed. New York: Springer, 1991.
    [7] 洪锦祥,彭大文,汪新惠.整体式桥台桥梁的台后被动土压力研究[J].福州大学学报:自然科学版,2003,31(6):721-725. HONG Jin-xiang, PENG Da-wen, WANG Xin-hui. Passive Earth Pressure Behind Abutment of Integral Abutment Bridges [J]. Journal of Fuzhou University: Natural Science Edition, 2003, 31 (6): 721-725.
    [8] 于天来,周田,姜立东,等.升温作用下整体桥台台后土压力计算方法的探讨[J].桥梁建设,2010(1):29-31. YU Tian-lai, ZHOU Tian, JIANG Li-dong, et al. Study of Calculating Methods for Earth Pressure Behind Abutment of Integral Abutment Bridge Under Action of Rising Temperatures [J]. Bridge Construction, 2010 (1): 29-31.
    [9] BLOODWORTH A G, XU M, BANKS J R, et al. Predicting the Earth Pressure on Integral Bridge Abutments [J]. Journal of Bridge Engineering, 2011, 17 (2): 371-381.
    [10] XU M, CLAYTON C R, BLOODWORTH A G. The Earth Pressure behind Full-height Frame Integral Abutments Supporting Granular Fill [J]. Canadian Geotechnical Journal, 2007, 44 (3): 284-298.
    [11] 王元战,李新国,陈楠楠.挡土墙主动土压力分布与侧压力系数[J].岩土力学,2005,26(7):1019-1022. WANG Yuan-zhan, LI Xin-guo, CHEN Nan-nan. Active Earth Pressure on a Retaining Wall and Lateral Coefficient of Earth Pressure [J]. Rock and Soil Mechanics, 2005, 26 (7): 1019-1022.
    [12] 李永刚.挡土墙被动土压力研究[J].岩土力学,2003,24(2):273-276. LI Yong-gang. Study on Passive Earth Pressure of Retaining Wall [J]. Rock and Soil Mechanics, 2003, 24 (2): 273-276.
    [13] KULHAWY F H, MAYNE P W. Manual on Estimating Soil Properties for Foundation Design[R]. New York: Geotechnical Engineering Group, 1990.
    [14] DICLELI M. Integral Abutment-backfill Behavior on Sand Soil-pushover Analysis Approach [J]. Journal of Bridge Engineering, 2005, 10 (3): 354-364.
    [15] 赵明华.土力学与基础工程[M].武汉:武汉理工大学出版社,2014. ZHAO Ming-hua. Soil Mechanics and Foundation Engineering [M]. Wuhan: Wuhan University of Technology Press, 2014.
    [16] CHEN Y. Important Considerations, Guidelines, and Practical Details of Integral Bridges [J]. Journal of Engineering and Technology, 1997, 14 (1): 16-19.
    [17] BURKE J R, MARTIN P. The Design of Integral Concrete Bridges [J]. Concrete International, 1993 (15): 37-42.
    [18] 彭大文,洪锦祥,郭爱民,等.整体式桥台桥梁的动力试验研究[J].中国公路学报,2004,17(4):59-63. PENG Da-wen, HONG Jin-xiang, GUO Ai-min, et al. Dynamic Field-test of Integral Abutment Bridge [J]. China Journal of Highway and Transport, 2004, 17 (4): 59-63.
    [19] 洪锦祥,彭大文.桥台刚度对整体式桥台桥梁受力性能的影响研究[J].公路交通科技,2006,23(1):77-81. HONG Jin-xiang, PENG Da-wen. Effect of the Abutment Stiffness on Integral Abutment Bridges [J]. Journal of Highway and Transportation Research and Development, 2006, 23 (1): 77-81.
    [20] 李丹丹,李文华.整体式桥梁台后土压力的试验研究[J].铁道建筑,2014(11):33-36. LI Dan-dan, LI Wen-hua. Experimental Study on Earth Pressure Behind Integral Abutment Bridges [J]. Railway Engineering, 2014 (11): 33-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700