沉管隧道柔性接头压缩性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Compression Performance of Flexible Joints in Immersed Tunnels
  • 作者:禹海涛 ; 萧文浩 ; 赵旭 ; 袁勇 ; 柴瑞 ; 刘洪洲
  • 英文作者:YU Hai-tao;XIAO Wen-hao;ZHAO Xu;YUAN Yong;CHAI Rui;LIU Hong-zhou;Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University;Key Laboratory of Urban Underground Engineering of Ministry of Education,Beijing Jiaotong University;Department of Structural Engineering, Ghent University;Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology;State Laboratory of Disaster Reduction of Civil Engineering, Tongji University;Hongkong-Zhuhai-Macao Bridge Authority;CCCC Highway Consultants CO., Ltd.;
  • 关键词:隧道工程 ; 柔性接头 ; 结构试验 ; 压缩性能 ; 力学模型
  • 英文关键词:tunnel engineering;;flexible joint;;structural test;;compression performance;;mechanical model
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:同济大学岩土及地下工程教育部重点实验室;北京交通大学城市地下工程教育部重点实验室;根特大学结构工程系;北京工业大学城市与工程安全减灾省部共建教育部重点实验室;同济大学土木工程防灾国家重点实验室;港珠澳大桥管理局;中交公路规划设计院有限公司;
  • 出版日期:2019-05-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:v.32;No.189
  • 基金:国家重点研发计划项目(2018YFC0809602,2018YFC1504305,2017YFC1500703);; 国家自然科学基金项目(51678438,41672289);; 上海市青年科技启明星计划项目(17QC1400500);; 上海市科学技术委员会重点支撑项目(16DZ1201904,18DZ1205103);; 城市地下工程教育部重点实验室开放基金项目(TUE2018-04)
  • 语种:中文;
  • 页:ZGGL201905012
  • 页数:9
  • CN:05
  • ISSN:61-1313/U
  • 分类号:119-126+184
摘要
柔性管节接头是沉管隧道的重要组成部分,接头的压缩性能决定了沉管接头的水密性能及安全性,但目前针对沉管隧道柔性接头压缩性能的研究相对缺乏,接头压缩性能参数的取值缺乏试验结果的支撑。基于此,以港珠澳大桥沉管隧道为研究背景,设计了几何比尺为1∶10的隧道管节和接头模型,并进行了大比尺结构试验和止水带材性试验。通过对沉管隧道管节柔性接头逐级施加轴向荷载,试验获得了接头轴向位移随轴向荷载的变化曲线,并与止水带材性试验结果进行了对比分析,揭示了柔性接头的非线性压缩性能:接头压缩性能受GINA止水带自身压缩性能影响;相比材性试验,结构试验结果中接头压缩量普遍偏小2~3 mm,相对差异可达21%。为了进一步验证试验结果,分别建立了二维和三维止水带有限元模型,通过对比试验结果与有限元计算结果,分析并量化了试验中支座摩擦、止水带长度、形状及其横向约束等对试验结果的影响规律。量化分析结果显示,支座摩擦、止水带长度及横向约束对试验结果影响较小,可忽略不计,但止水带纵向尺寸对结构压缩性能影响较为显著,结果相差最大达到8.8%。最后基于试验结果提出了一种可用于模拟沉管接头压缩性能的简化力学计算模型,亦可应用于其他柔性接头的轴向力学分析。
        Flexible immersion joints are one of the most important components in immersed tunnels, and their compression performance determines the water-proofing capability and structural safety of the joints. However, current research on the compression behavior of immersion joints is relatively insufficient, and more experiments are needed on the related parameter to support its real-life application. Taking an immersed tunnel in the Hong Kong-Zhuhai-Macau link as a case study, the models of the tunnel element and immersion joint with a geometric scale ratio of 1/10 were designed, followed by a large-scale experiment as well as the testing of the mechanical properties of the rubber. The axial force-compression behaviors of the immersion joints were studied by applying an axial force to the joint, and the structural and material test results were compared. The results show the non-linear behavior of the immersion joint. The compression performance of the joint is affected by the compression property of the GINA rubber. The results of the structural tests are generally 2-3 mm lower than those of the mechanical property tests, the relative difference being 21%. In order to verify the experimental results, both two-dimensional and three-dimensional rubber numerical models were established. A comparison of the experimental and numerical results was undertaken to analyze the effects of friction force between the element and ground support, length, shape, and transversal restraint of the rubber and quantify them in detail. The results indicate that the effects of friction force, length, and transversal restraint of the rubber are relatively small and can be ignored. However, the longitudinal dimension exerts a significant influence, resulting in a maximum difference of 8.8%. Finally, a simplified mechanical model was proposed to simulate the compression behaviors of the immersion joints in accordance with the test results. The results show that it can also be applied to axial mechanical analyses of other flexible joints.
引文
[1] 陈韶章.沉管隧道设计与施工[M].北京:科学出版社,2002.CHEN Shao-zhang.Design and Construction of Immersed Tunnels [M].Beijing:Science Press,2002.
    [2] LUNNISS R,BABER J.Immersed Tunnels [M].Boca Raton:CRC Press,2013.
    [3] KIYOMIYA O.Earthquake-resistant Design Features of Immersed Tunnels in Japan [J].Tunnelling and Underground Space Technology,1995,10 (4),463-475.
    [4] 禹海涛,袁勇,刘洪洲,等.沉管隧道接头力学模型及刚度解析表达式[J].工程力学,2014,31(6):145-150.YU Hai-tao,YUAN Yong,LIU Hong-zhou,et al.Mechanical Model and Analytical Solution of Stiffness for Joints of Immersed-tube Tunnel [J].Engineering Mechanics,2014,31 (6):145-150.
    [5] 禹海涛,萧文浩,袁勇,等.沉管隧道接头减震耗能装置设计与试验验证[J].中国公路学报,2016,29(12):142-148.YU Hai-tao,XIAO Wen-hao,YUAN Yong,et al.Design and Experimental Verification of Seismic Mitigation and Energy-dissipated Equipment for Immersion Tunnel Joint [J].China Journal of Highway and Transport,2016,29 (12):142-148.
    [6] 章勇,王海龙,郭俊,等.沉管隧道接头竖向压剪力学性能研究[J].地下空间与工程学报,2016,12(增1):24-31.ZHANG Yong,WANG Hai-long,GUO Jun,et al.Vertical Compression Shear Mechanical Performance Study of Immersed Tube Tunnel Joint [J].Chinese Journal of Underground Space and Engineering,2016,12 (S1):24-31.
    [7] 陆明,朱祖熹,张勇.大型沉管隧道管段接头防水试验研究[J].中国建筑防水,2003(10):7-10.LU Ming,ZHU Zu-xi,ZHANG Yong.Experiment on Watertight Ness of Connections of Pipe Sections Used in a Large Sunk Pipe Tunnel [J].China Building Waterproofing,2003 (10):7-10.
    [8] 何拥军.杭州湾海底沉管隧道管段结合部施工关键技术研究[D].上海:同济大学,2005.HE Yong-jun.Critical Construction Technologies of the Immersion Joint in Hangzhou Bay Immersed Tunnel [D].Shanghai:Tongji University,2005.
    [9] 胡指南,杨鹏,单超,等.沉管隧道GINA止水带结构形式对比研究[J].隧道建设,2014,34(10):937-943.HU Zhi-nan,YANG Peng,SHAN Chao,et al.Comparative Study on Structural Types of GINA Gaskets Used in Immersed Tunnel [J].Tunnel Construction,2014,34 (10):937-943.
    [10] 王光辉.沉管隧道短管节拉合试验[J].隧道建设,2010,30(4):385-387.WANG Guang-hui.Experiment on Pulling-connecting of Short Elements of Immersed Tunnels [J].Tunnel Construction,2010,30 (4):385-387.
    [11] 陆明,陈鸿.超深埋海底沉管隧道接头防水设计探讨[J].中国建筑防水,2012(8):17-21.LU Ming,CHEN Hong.Discussion on the Joints Waterproofing Design of Ultra-deep Buried Submarine Immersed Tube Tunnel [J].China Building Waterproofing,2012 (8):17-21.
    [12] 禹海涛,萧文浩,袁勇,等.沉管隧道接头与管节本体刚度比试验研究[J].中国公路学报,2016,29(12):134-141.YU Hai-tao,XIAO Wen-hao,YUAN Yong,et al.Experiment on Stiffness Ratio of Immersion Joint to Immersed Tunnel Element [J].China Journal of Highway and Transport,2016,29 (12):134-141.
    [13] 成大先.机械设计手册[M].北京:化学工业出版社,2016.CHENG Da-xian.Handbook of Mechanical Design [M].Beijing:Chemical Industry Press,2016.
    [14] 郑明军,王文静,陈政南,等.橡胶Mooney-Rivlin模型力学性能常数的确定[J].橡胶工程,2003,50(8):462-465.ZHENG Ming-jun,WANG Wen-jing,CHEN Zheng-nan,et al.Determination for Mechanical Constants of Rubber Mooney-Rivlin Model [J].China Rubber Industry,2003,50 (8):462-465.
    [15] 禹海涛,袁勇.长大隧道地震响应分析与试验方法新进展[J].中国公路学报,2018,31(10):19-35.YU Hai-tao,YUAN Yong.Review on Seismic Response Analysis and Test Methods for Long and Large Tunnels [J].China Journal of Highway and Transport,2018,31 (10):19-35.
    [16] 禹海涛,李翀,袁勇,等.用于长隧道多点振动台试验的节段式模型箱及其适用性研究[J].中国公路学报,2016,29(12):166-174.YU Hai-tao,LI Chong,YUAN Yong,et al.Research on Segmental Model Container and Its Validation for Multi-point Shaking Table Test of Long Tunnels [J].China Journal of Highway and Transport,2016,29 (12):166-174.
    [17] 袁勇,禹海涛,燕晓,等.超长沉管隧道多点振动台试验模拟与分析[J].中国公路学报,2016,29(12):157-165.YUAN Yong,YU Hai-tao,YAN Xiao,et al.Multi-point Shaking Table Test Simulation and Analysis of a Super-long Immersed Tunnel [J].China Journal of Highway and Transport,2016,29 (12):157-165.
    [18] 燕晓,禹海涛,袁勇,等.沉管隧道基槽边坡振动台试验及动力特性[J].中国公路学报,2016,29(12):149-156.YAN Xiao,YU Hai-tao,YUAN Yong,et al.Shaking Table Test on Seismic Characteristics of Trench Slope of Immersed Tunnel [J].China Journal of Highway and Transport,2016,29 (12):149-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700