具有柱状晶组织的镁合金高温力学性能及断裂机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High temperature mechanical properties and fracture mechanism of magnesium alloy with columnar crystal structure
  • 作者:谢宏斌 ; 林小娉 ; 印策 ; 吴厚朴 ; 杨惠雅 ; 商艳红 ; 徐高鹏
  • 英文作者:XIE Hong-bin;LIN Xiao-ping;YIN Ce;WU Hou-pu;YANG Hui-ya;SHANG Yan-hong;XU Gao-peng;School of Resources and Materials, Northeastern University at Qinhuangdao;
  • 关键词:Mg-Zn-Y合金 ; 定向凝固 ; 形变机制 ; 断裂机制
  • 英文关键词:Mg-Zn-Y alloy;;directional solidification;;deformation mechanism;;fracture mechanism
  • 中文刊名:ZYXZ
  • 英文刊名:The Chinese Journal of Nonferrous Metals
  • 机构:东北大学秦皇岛分校资源与材料学院;
  • 出版日期:2017-09-15
  • 出版单位:中国有色金属学报
  • 年:2017
  • 期:v.27;No.222
  • 基金:国家自然科学基金资助项目(51675092,51775099);; 河北省自然科学基金资助项目(E2014501123)~~
  • 语种:中文;
  • 页:ZYXZ201709014
  • 页数:10
  • CN:09
  • ISSN:43-1238/TG
  • 分类号:112-121
摘要
利用定向凝固技术制备具有(11 2 0)á0001?择优取向的柱状晶Mg-6.52Zn-0.67Y合金。对定向凝固Mg-6.52Zn-0.67Y合金进行室温及高温拉伸实验,并利用SEM、XRD和EBSD等分析方法研究合金的拉伸断口、形变过程中组织演变及断裂机制。结果表明:定向凝固Mg-6.52Zn-0.67Y合金的室温σ_(0.2)和σ_b分别为124和196MPa,δ为13%,表明定向凝固合金室温下具有一定的均匀塑性变形能力;随着拉伸温度的升高,合金的强度降低,塑性升高,150℃拉伸时其σ_b为146 Ma,δ升至27%;300℃拉伸时其σ_b降至73 MPa,δ高达35%。150℃和200℃拉伸时其主要形变机制为锥面、棱柱面滑移及{10 1 2}孪生和{10 1 1}孪生等共同作用,合金的断裂机制为韧性断裂和准解理的复合断裂;300℃拉伸时,主要形变机制则为锥面滑移和动态再结晶,合金的断裂机制为韧性断裂。
        Columnar crystal Mg-6.52Zn-0.67Y alloy with(11 2 0)á0001? preferential orientation was prepared by directional solidification technique. The deformation and fracture mechanism were investigated in directionally solidified alloy through stretch test at room temperature and high temperature by using SEM, XRD and EBSD analysis methods. The results show that, directionally solidified Mg-6.52Zn-0.67Y alloy at room temperature has a certain uniform plastic deformation capacity because its yield strength and tensile strength are 124 MPa and 196 MPa, respectively, and its elongation is 13%. With the increase of the tensile temperature, the strength of the alloy decreases, the plasticity increases. At 150 ℃, the tensile strength is 146 MPa and the elongation increases to 27%. At 300 ℃, the tensile strength is down to 73 MPa and the elongation is up to 35%. The deformation mechanism is not only pyramidal, prismatic slip but also {10 1 2} and {10 1 1} twins twin jointly, and the fracture mechanism is a mixture cracking mechanism(ductile fracture and quasi cleavage fracture) at 150 ℃ or 200 ℃. With the tensile temperature reaches to 300 ℃, the deformation mechanism is pyramidal slip and dynamic recrystallization, and the fracture mechanism is ductile fracture.
引文
[1]PEKGULERYUZ M O,KAYA A A.Creep resistant magnesium alloys for powertrain applications[J].Advanced Engineering Materials,2003,5(12):866-878.
    [2]PEKGULERYUZ M,CELIKIN M.Creep resistance in magnesium alloys[J].International Materials Reviews,2010,55(4):197-217.
    [3]LUO A A.Recent magnesium alloy development for elevated temperature applications[J].International Materials Reviews,2004,49(1):13-30.
    [4]ITOI T,INAZAWA T,YAMASAKI M,KAWAMURA Y,HIROHASHI M.Microstructure and mechanical properties of Mg-Zn-Y alloy sheet prepared by hot-rolling[J].Materials Science and Engineering A,2013,560(9):216-223.
    [5]肖旋,徐乐,秦学智,侯介山,王常帅,郭建亭,周兰章.稀土元素Y和Ce对定向凝固镍基高温合金高温氧化行为的影响[J].中国有色金属学报,2014,24(11):2769-2776.XIAO Xuan,XU Le,QIN Xue-zhi,HOU Jie-shan,WANG Chang-shuai,GUO Jian-ting,ZHOU Lan-zhang.Effect of elements Y and Ce on high temperature oxidation behavior of directionally-solidified Ni-based superalloy[J].The Chinese Journal of Nonferrous Metals,2014,24(11):2769-2776.
    [6]巫剑,王志,胡晓军,郭占成,范占军,谢永龙.Si-Sn合金精炼-定向凝固过程硅的分离和提纯[J].中国有色金属学报,2014,24(7):1871-1877.WU Jian,WANG Zhi,HU Xiao-jun,GUO Zhan-cheng,FAN Zhan-jun,XIE Yong-long.Separation and purification of silicon by combined Si-Sn alloy refining and directional solidification process[J].The Chinese Journal of Nonferrous Metals,2014,24(7):1871-1877.
    [7]MA Rong,DONG Xuan-pu,CHEN Shu-qun,PAN Zhang,LING Hong-jiang,FAN Zi-tian.Effect of quasicrystal phase on mechanical properties and damping capacities of Mg-Zn-Y-Zr alloys[J].Materials Science and Engineering A,2013,587(18):328-335.
    [8]YASIN K,üMIT B,PINAR A,AKS?Z S,KE?L?O?LU K,MARA?LI N.Dependence of microstructural,mechanical and electrical properties on growth rates in directional solidified Zn-Al-Bi eutectic alloy[J].Transactions of Nonferrous Metals Society of China,2016,26(9):2320-2335.
    [9]肖路.镁合金定向凝固技术的研究进展[J].热加工工艺,2015,44(13):9-12.XIAO Lu.Research progress of directional solidification technology of magnesium alloy[J].Hot Working Technology,2015,44(13):9-12.
    [10]唐守秋,周吉学,田长文,李卫红,杨院生.镁合金定向凝固技术研究的意义与进展[J].山东科学,2011,24(4):18-22.TANG Shou-qiu,ZHOU Ji-xue,TIAN Chang-wen,LI Wei-hong,YANG Yuan-sheng.The significance and development of directional solidification technology of magnesium alloys[J].Shandong Science,24(4):18-22.
    [11]赵彦民,张家奇,向伟,郭该丽.定向凝固AZ91镁合金工艺方法研究[J].热加工工艺,2012,41(13):75-78.ZHAO Yan-min,ZHANG Jia-qi,XIANG Wei,GUO Gai-li.Study on the technology of AZ91 magnesium alloy in directional solidification[J].Hot Working Technology,2012,41(13):75-78.
    [12]夏鹏成,于金江,孙晓峰,管恒荣,胡壮麒.高温时效时间对定向凝固DZ951镍基高温合金组织和持久性能的影响[J].稀有金属材料与工程,2010,39(1):69-71.XIA Peng-cheng,YU Jin-jiang,SUN Xiao-feng,GUAN Heng-rong,HU Zhuang-qi.Effect of high temperature aging time on Microstructure and properties of DZ951 Ni based superalloy[J].Rare metal materials and Engineering,2010,39(1):69-71.
    [13]MABUCHI M,KOBATA M,CHINO Y,IWASAKI H.Tensile properties of directionally solidified AZ91 Mg alloy[J].Materials Transactions,2003,44(4):436-439.
    [14]陈孝先,李秋书,范艳艳.定向凝固对AZ31镁合金凝固组织的影响[J].中国铸造装备与技术,2009(2):19-21.CHEN Xiao-xian,LI Qiu-shu,FAN Yan-yan.Effect of directional solidification on solidification structure of AZ31magnesium alloy[J].China Foundry Machinery&Technology,2009(2):19-21.
    [15]张晓林,李凛.定向凝固制备的网球拍用新型镁合金的组织性能研究[J].热加工工艺,2016,45(3):77-79.ZHANG Xiao-lin,LI Lin.Study on Microstructure and properties of new magnesium alloy for tennis racket prepared by directional solidification[J].Hot Working Technology,2016,45(3):77-79.
    [16]张炎.Mg-Sm-x Ca合金定向凝固行为研究[D].太原:太原科技大学,2015:53-56.ZHAGN Yan.Study on directional solidification behavior of Mg-Sm-x Ca[D].Taiyuan:Taiyuan University of Science and Technology,2015:53-56.
    [17]肖璐.定向凝固镁合金工艺、组织与性能的研究[D].重庆:重庆大学,2013:33-62.XIAO Lu.Process,microstructure and mechanical properties in directionally solidified magnesium alloys[D].Chongqing:Chongqing University,2013:33-62.
    [18]LUO Shi-feng,YANG Guang-yu,LIU Shao-jun,WANG Jia-he,LI Jie-hua,JIE Wan-qi.Microstructure evolution and mechanical properties of directionally solidified Mg-x Gd(x=0.8,1.5,and 2.5)alloys[J].Materials Science and Engineering A,2016,662:241-250.
    [19]WANG Jia-he,YANG Guang-yu,LIU Shao-jun,JIE Wan-qi,JIE Wan-qi.Microstructure and room temperature mechanical properties of directionally solidified Mg-2.35Gd magnesium alloy[J].Transactions of Nonferrous Metals Society of China,2016,26(5):1294-1300.
    [20]刘筱,朱必武,李落星,唐昌平.挤压态AZ31镁合金热变形过程中的孪生和织构演变[J].中国有色金属学报,2016,26(2):288-295.LIU Xiao,ZHU Bi-wu,LI Luo-xing,TANG Chang-ping.Twinning and texture evolution in extruded AZ31 magnesium alloy during hot deformation[J].The Chinese Journal of Nonferrous Metals,2016,26(2):288-295.
    [21]宋广胜,陈强强,徐勇,张士宏.AZ31镁合金变路径压缩的力学性能和孪晶机制[J].中国有色金属学报,2016,26(9):1870-1877.SONG Guang-sheng,CHEN Qiang-qiang,XU Yong,ZHANG Shi-hong.Twinning mechanism and mechanical property of AZ31 magnesium alloy during multi-paths compressions[J].The Chinese Journal of Nonferrous Metals,2016,26(9):1870-1877.
    [22]南小龙.Mg-3Al-3Sn镁合金微观组织、拉伸性能与变形机制[D].吉林:吉林大学,2015:45-73.NAN Xiao-long.Microstructure,tensile properties and deformation mechanism of Mg-3Al-3Sn magnesium alloy[D].Jilin:Jilin University,2015:45-73.
    [23]YU Qian,QI Liang,CHEN Kai,MISHRA R K,LI Ju,MINOR A M.The nanostructured origin of deformation twinning[J].Nano Letters,2012,12(2):887-892.
    [24]YANG P,MENG L,XIE Q G,CUI F E.A preliminary analysis on compression twins in magnesium[J].Materials Science Forum,2007,546/549:297-300.
    [25]HONG S G,PARK S H,CHONG S L.Role of{10 1 2}twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy[J].Acta Materialia,2010,58(18):5873-5885.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700