Na对于Al早期大气腐蚀的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Na on Early Atmospheric Corrosion of Al
  • 作者:陈星晨 ; 王杰 ; 陈德任 ; 钟舜聪 ; 王向峰
  • 英文作者:CHEN Xingchen;WANG Jie;CHEN Deren;ZHONG Shuncong;WANG Xiangfeng;State Key Laboratory of Photocatalysis on Energy and Environment, School of Mechanical Engineering and Automation, Fuzhou University;
  • 关键词:大气腐蚀 ; 激光诱导击穿光谱(LIBS) ; 三维形貌 ; 腐蚀产物 ; COMSOL
  • 英文关键词:atmospheric corrosion;;laser induced breakdown spectroscopy(LIBS);;three-dimensional topography;;corrosion product;;COMSOL
  • 中文刊名:JSXB
  • 英文刊名:Acta Metallurgica Sinica
  • 机构:福州大学机械工程与自动化学院能源与环境光催化国家重点实验室;
  • 出版日期:2019-04-11
  • 出版单位:金属学报
  • 年:2019
  • 期:v.55
  • 基金:国家自然科学基金项目No.51675103;; 福州大学能源与环境光催化国家重点实验室基金项目No.SKLPEE-KF201719;; 福州科技局项目No.2018-G-35;; Supported by National Natural Science Foundation of China(No.51675103);; State Key Laboratory of Photocatalysis on Energy and Environment(No.SKLPEE-KF201719);; Fuzhou Science and Technology Bureau(No.2018-G-35)
  • 语种:中文;
  • 页:JSXB201904011
  • 页数:8
  • CN:04
  • ISSN:21-1139/TG
  • 分类号:105-112
摘要
采用单脉冲激光诱导击穿光谱(LIBS)测量了大气环境中腐蚀35 d后金属Al的谱线,结合三维形貌测量,研究了Na元素在Al表面的深度分布。结果表明,Al表面的Na元素源于大气环境,且Na参与生成腐蚀产物NaAlCO_3(OH)_2,其含量随着腐蚀深度的增加呈幂函数衰减。不同腐蚀深度时NaAlCO_3(OH)_2的含量可以转变为阴极面积的变化,结合测量得到的Al的极化曲线,利用COMSOL软件建立了氧还原和阴极面积同时影响Al的大气腐蚀仿真模型,揭示Na对腐蚀机理的影响。计算结果表明腐蚀深度为6.155μm,与LIBS实验测得的Na元素深度一致。
        Aluminum and aluminum alloy are widely used in every field of modern life. It is especially important to understand the detailed mechanisms of aluminum atmospheric corrosion. Traditional studies only consider the role of oxygen reduction and focus on anions such as Cl~-, SO_4~(2-) in the environment, ignoring the effects of cations such as Na~+ on the atmospheric corrosion. However, recent studies have shown that the effect of Na element on the corrosion of aluminum can not be ignored. In this work, singleshot laser-induced breakdown spectroscopy(LIBS) was used to measure the aluminum atomic lines after corrosion for 35 d in the atmospheric environment, and combined with a three-dimensional tomography measurement, to study the depth profiling of Na on the aluminum surface. The results show that the Na element on the surface of the aluminum originates from the atmospheric environment, and Na is involved in the formation of corrosion product NaAlCO_3(OH)_2. The content of NaAlCO_3(OH)_2 decreases as the depth increases following an exponential power function. The content decrease of NaAlCO_3(OH)_2 in different depths can be transformed into the change of cathode area. Combined with the measured polarization curve of aluminum, the atmospheric corrosion model of aluminum including the presence of oxygen reduction and the change of cathode area was established using COMSOL software. The calculated corrosion depth is 6.155 μm, which is consistent with the depth of Na element measured by LIBS experiments. By studying the distribution of Na cations and corrosion products, a simulation model was established to reveal the influence on corrosion mechanism, which is of great significance for the study of early atmospheric corrosion of aluminum.
引文
[1]Hou B R,Li X G,Ma X M,et al.The cost of corrosion in China[J].npj Mater.Degrad.,2017,1:4
    [2]An B G,Zhang X Y,Han E-H,et al.Research situation of atmospheric corrosion of aluminum and aluminum alloys[J].Chin.J.Nonferrous Met.,2001,11(增刊2):11(安百刚,张学元,韩恩厚等.铝和铝合金的大气腐蚀研究现状[J].中国有色金属学报,2001,11(suppl.2):11)
    [3]Nesic S,Nordsveen M,Maxwell N,et al.Probabilistic modelling of CO2,corrosion laboratory data using neural networks[J].Corros.Sci.,2001,43:1373
    [4]Song Y R,Jiang G M,Chen Y,et al.Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments[J].Sci.Rep.,2017,7:6865
    [5]Mccafferty E.Sequence of steps in the pitting of aluminum by chloride ions[J].Corros.Sci.,2003,45:1421
    [6]Vera R,Delgado D,Rosales B M.Effect of atmospheric pollutants on the corrosion of high power electrical conductors:Part 1.Aluminium and AA6201 alloy[J].Corros.Sci.,2006,48:2882
    [7]Schaller R F,Jove-Colon C F,Taylor J M,et al.The controlling role of sodium and carbonate on the atmospheric corrosion rate of aluminum[J].npj Mater.Degrad.,2017,1:20
    [8]Ejaz A,Lu Z P,Chen J J,et al.The effects of hydrogen on anodic dissolution and passivation of iron in alkaline solutions[J].Corros.Sci.,2015,101:165
    [9]Alcántara J,Chico B,Díaz I,et al.Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel[J].Corros.Sci.,2015,97:74
    [10]Watanabe M,Hokazono A,Handa T,et al.Corrosion of copper and silver plates by volcanic gases[J].Corros.Sci.,2006,48:3759
    [11]Blücher D B,Lindstr?m R W,Svensson J E,et al.The effect of CO2on the NaCl-induced atmospheric corrosion of aluminum[J].J.Electrochem.Soc.,2001,148:B127
    [12]Blücher D B,Svensson J E,Johansson L G.The NaCl-induced atmospheric corrosion of aluminum the influence of carbon dioxide and temperature[J].J.Electrochem.Soc.,2001,150:B93
    [13]Wen S B,Mao X L,Greif R,et al.Laser ablation induced vapor plume expansion into a background gas.II.Experimental analysis[J].J.Appl.Phys.,2007,101:023115
    [14]Li T C,Yuan C S,Huang H C,et al.Inter-comparison of seasonal variation,chemical characteristics,and source identification of atmospheric fine particles on both sides of the Taiwan Strait[J].Sci.Rep.,2016,6:22956
    [15]Xiao H W,Xiao H Y,Luo L,et al.Atmospheric aerosol compositions over the South China Sea:Temporal variability and source apportionment[J].Atmos.Chem.Phys.,2017,17:3199
    [16]Zhao R J,Han B,Lu B,et al.Element composition and source apportionment of atmospheric aerosols over the China Sea[J].Atmos.Pollut.Res.,2015,6:191
    [17]Chen Z Y,Cui F,Kelly R G.Calculations of the cathodic current delivery capacity and stability of crevice corrosion under atmospheric environments[J].J.Electrochem.Soc.,2008,155:C360
    [18]Galvele J.Transport processes in passivity breakdown-II.Full hydrolysis of the metal ions[J].Corros.Sci.,1981,21:551
    [19]Gravano S M,Galvele J R.Transport processes in passivity breakdown-III.Full hydrolysis plus ion migration plus buffers[J].Corros.Sci.,1984,24:517
    [20]Nguyen T H,Foley R T.The chemical nature of aluminum corrosion.Ш.The dissolution mechanism of aluminum oxide and aluminum powder in various electrolytes[J].J.Electrochem.Soc.,1980,127:2563
    [21]Graedel T E.Corrosion mechanisms for aluminum exposed to the atmosphere[J].J.Electrochem.Soc.,1989,136:204C
    [22]El Sherbini A M,El Sherbini T M,Hegazy H,et al.Evaluation of self-absorption coefficients of aluminum emission lines in laserinduced breakdown spectroscopy measurements[J].Spectrochim.Acta,2005,60B:1573
    [23]Lazic V,Barbini R,Colao F,et al.Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments[J].Spectrochim.Acta,2001,56B:807
    [24]Rai A K,Yueh F Y,Singh J P.Laser-induced breakdown spectroscopy of molten aluminum alloy[J].Appl.Opt.,2003,42:2078
    [25]Lutey A H A.An improved model for nanosecond pulsed laser ablation of metals[J].J.Appl.Phys.,2013,114:083108
    [26]Aziz P M,Godard H P.Pitting corrosion characteristics of aluminum-Influence of magnesium and manganese[J].Ind.Eng.Chem.,2002,44:1791
    [27]Mansfeld F,Kenkel J V.Galvanic corrosion of Al alloys-III.The effect of area ratio[J].Corros.Sci.,1975,15:239
    [28]Melchers R E.Time dependent development of aluminium pitting corrosion[J].Adv.Mater.Sci.Eng.,2015,2015:215712
    [29]Deshpande K B.Validated numerical modelling of galvanic corrosion for couples:Magnesium alloy(AE44)-mild steel and AE44-aluminium alloy(AA6063)in brine solution[J].Corros.Sci.,2010,52:3514
    [30]Ge J,Isgor O B.Effects of Tafel slope,exchange current density and electrode potential on the corrosion of steel in concrete[J].Mater.Corros.,2007,58:573
    [31]Mizuno D,Kelly R G.Galvanically Induced intergranular corrosion of AA5083-H131 under atmospheric exposure conditions:Part 2-Modeling of the damage distribution[J].Corrosion,2013,69:681
    [32]Millero F J,Huang F,Laferiere A L.Solubility of oxygen in the major sea salts as a function of concentration and temperature[J].Mar.Chem.,2002,78:217
    [33]Verbrugge M.Galvanic corrosion over a semi-infinite,planar surface[J].Corros.Sci.,2006,48:3489
    [34]Antonijevic M M,Alagic S C,Petrovi M B,et al.The influence of pH on electrochemical behavior of copper in presence of chloride ions[J].Int.J.Electrochem.Sc.,2009,4:962
    [35]Lin J M.Effect of city on the atmosphere humidity distributionTaking Fuzhou as an example[J].Areal Res.Dev.,1991,10(2):51(林家蒙.城市对大气湿度分布影响研究--以福州市为例[J].地域研究与开发,1991,10(2):51)
    [36]Mattsson E,Lindgren S.Hard-rolled aluminum alloys[A].Metal Corrosion in the Atmosphere[C].Philadelphia:American Society for Testing and Materials,1968:240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700