Rayleigh型槽波垂直分量探测的应用研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research and application of vertical component detection of Rayleigh wave
  • 作者:赵朋朋
  • 英文作者:ZHAO Pengpeng;China Coal Research Institute;Xi'an Research Institute China Coal Technology and Engineering Group Corp.;
  • 关键词:槽波 ; Rayleigh型槽波 ; 垂直分量 ; 全反射
  • 英文关键词:in-seam seimic;;Rayleigh wave;;vertical component;;total reflection
  • 中文刊名:MTKJ
  • 英文刊名:Coal Science and Technology
  • 机构:煤炭科学研究总院;中煤科工集团西安研究院有限公司;
  • 出版日期:2019-07-15
  • 出版单位:煤炭科学技术
  • 年:2019
  • 期:v.47;No.536
  • 基金:国家重点研发计划资助项目(2018YFC0807804)
  • 语种:中文;
  • 页:MTKJ201907028
  • 页数:6
  • CN:07
  • ISSN:11-2402/TD
  • 分类号:220-225
摘要
在目前的槽波地震勘探中,Love型槽波被广泛应用,从施工和数据处理等环节分析发现,Love型槽波在勘探过程中存在一定的局限性,而Rayleigh型槽波的垂直分量(即z分量)相对于Love型槽波具有一定优势,可以运用于槽波勘探。为了研究Rayleigh型槽波比Love型槽波在勘探中的优越性,利用广义Snell定律并经理论计算证明,Rayleigh型槽波在通常情况下是存在的,基阶Rayleigh型槽波z分量的能量在煤层中央位置最强,且不受接收角度的影响,再通过使用二维数值模拟分析,Rayleigh型槽波在煤层中的传播规律以及能量分布规律,发现基阶的Rayleigh型槽波发育良好,煤层中央位置能量最强,与之前理论分析吻合。最后进行了槽波透射勘探和反射勘探的应用试验,数据处理时运用Rayleigh型槽波的处理方法,取得了良好的探测效果。研究结果表明:Rayleigh型槽波通常都存在,因炸药震源激发的弹性波以P波为主,Rayleigh型槽波z分量能量较Love型槽波更强,所以Rayleigh型槽波更适合槽波勘探,具体表现在勘探施工时相对于Love型槽波具有施工效率高,设备轻便的优势,施工时间可以缩短至之前的1/3甚至1/6;在数据处理阶段免去两分量记录旋转操作,简化了流程提高了处理精度。
        Love-type wave is widely used in current in-seam seimic( ISS).From the analysis of construction and data processing,the author finds that Love wave has some limitations in the exploration process,while vertical component( z component) of Rayleigh-type of ISS has certain advantages over Love-type and can be used in ISS. In order to study its feasibility,the generalized Snell's law was analyzed and proved by theoretical calculation that Rayleigh wave existed under normal circumstances. The energy of z component of fundamental Rayleigh wave is strongest in the central position of coal seam and is not affected by receiving angle. Then,two-dimensional numerical simulation is used to analyze the propagation and energy distribution of Rayleigh wave in coal seam. It is found that the fundamental Rayleigh wave develops well,and the energy in the central position of coal seam is the strongest,which is consistent with the previous theoretical analysis. Finally,the application experiments of channel wave transmission exploration and reflection exploration are carried out. Rayleigh type wave processing method is used in data processing,and good detection results are obtained. The results show that Rayleigh wave usually exists,and because the elastic wave excited by explosive source is mainly P wave and the z component energy of Rayleigh wave is stronger than that of Love wave,Rayleigh wave is more suitable for ISS,which is manifested in the fact that compared with Love wave,Rayleigh wave has the advantages of high construction efficiency,portable equipment and construction time can be reduced to 1/3 or even1/6 of the previous time; In the data processing stage,the rotation operation of two-component records is avoided,which simplifies the process and improves the processing accuracy.
引文
[1]皮娇龙,滕吉文,刘有山.地震槽波的数学-物理模拟初探[J].地球物理学报,2018,61(6):2481-2493.PI Jiaolong,TENG Jiwen,LIU Youshan. Preliminary study on the numerical-physical simulation of seismic channel waves[J]. Chinese Journal of Geophysics,2018,61(6):2481-2493.
    [2]李刚,王季,关奇.槽波探测中谐波噪声的自适应衰减算法研究[J].煤炭科学技术,2017,45(3):170-173.LI Gang,WANG Ji,GUAN Qi. Study on algorithm of harmonic noise adaptive attenuation in channel waves[J]. Coal Science and Technology,2017,45(3):170-173.
    [3]焦阳,卫金善,李梓毓,等.槽波反射法在断层探测中的应用研究[J].煤炭科学技术,2017,45(11):187-191.JIAO Yang,WEI Jinshan,LI Ziyu,et al.Study on channel wave reflection method applied to detection of fault[J].Coal Science and Technology,2017,45(11):187-191.
    [4]程建远,朱梦博,崔伟雄,等.回采工作面递进式煤厚动态预测试验研究[J].煤炭科学技术,2019,47(1):237-244.CHENG Jianyuan,ZHU Mengbo,CUI Weixiong,et al. Experimental study of coal thickness progressive prediction in working face[J]. Coal Science and Technology,2019,47(1):237-244.
    [5]杜艳艳,冯磊,余为维,等.透射法地震勘探中槽波几何运动学特征[J].地球物理学进展,2017,32(5):1978-1983.DU Yanyan,FENG Lei,YU Weiwei,et al. Geometric Kinematic characteristics of the channel wave in transmission seismic exploration[J].Progress in Geophysics,2017,32(5):1978-1983.
    [6]蔺国华.透射槽波方法在中厚煤层隐伏小断层探测中的应用[J].中国煤炭地质,2018,30(S1):113-117.LIN Guohua. Application of transmitted channel wave method in medium-thick coal seam concealed minor fault prospecting[J].Coal Geology of China,2018,30(S1):113-117.
    [7]赵朋朋,张军,刘毅.槽波反射法在工作面小构造探测中的应用[J].中州煤炭,2016(10):138-141.ZHAO Pengpeng,ZHANG Jun,LIU Yi.Application of ISS reflection method in detection of small structures in working face[J].Zhongzhou Coal,2016(10):138-141.
    [8]冯磊,杜艳艳,李松营,等.透射法典型槽波数据波场分析[J].地球物理学进展,2018,33(2):590-595.FENG Lei,DU Yanyan,LI Songying,et al. Wavefield analysis of typical in-seam seismic data by transmission method[J]. Progress in Geophysics,2018,33(2):590-595.
    [9]李刚.基于透射槽波的煤矿陷落柱探测方法[J].煤矿安全,2016,47(12):76-78.LI Gang. Exploration method of coal mine collapse column based on transmission channel wave[J].Safety in Coal Mines,2016,47(12):76-78.
    [10]姚小帅,冯磊,廉洁,等.槽波地震反射法在断裂构造探测中的应用[J].中州煤炭,2015(9):101-104.YAO Xiaoshuai,FENG Lei,LIAN Jie,et al Application of inseam seismic reflection method in fracture structure detection[J].Zhongzhou Coal,2015(9):101-104.
    [11]赵朋朋.槽波透射与反射联合勘探在小构造探测中的应用[J].煤炭工程,2017,49(5):47-50.ZHAO Pengpeng. Application of ISS transmission and reflection method in detection of small structures[J]. Coal Engineering,2017,49(5):47-50.
    [12]杨小慧,李德春,于鹏飞.煤层中瑞利型导波的频散特性[J].物探与化探,2010,34(6):750-752.YANG Xiaohui,LI Dechun,YU Pengfei. Dispersion characteristics of Rayleigh channel waves in coal seam[J].Geophysical and Geochemical Exploration,2010,34(6):750-752.
    [13]乔勇虎,滕吉文,皮娇龙.含小断层煤层Rayleigh型槽波波场和频散分析[J].地球物理学报,2018,61(12):4976-4987.QIAO Yonghu,TENG Jiwen,PI Jiaolong. Rayleigh channel wave field and dispersion of coal seams with small faults[J]. Chinese Journal of Geophysics,2018,61(12):4976-4987.
    [14]刘强,程建远,王保利,等.Rayleigh型与Love型槽波波场分离[J].煤田地质与勘探,2017,45(6):143-148.LIU Qiang,CHENG Jianyuan,WANG Baoli,et al. Separation of Rayleigh and Love seam waves[J]. Coal Geology and Exploration,2017,45(6):143-148.
    [15] WANG Baoli. Automatic pickup of arrival time of channel wave based on multi-channel constraints[J]. Applied Geophysics,2018,15(1):118-124,150.
    [16]乔勇虎,滕吉文.煤层厚度变化时地震槽波理论频散曲线计算方法及频散特征分析[J].地球物理学报,2018,61(8):3374-3384.QIAO Yonghu,TENG Jiwen. Calculation method for theoretical dispersion curves of seismic channel waves considering variation of coal-seam thickness and analysis of dispersion characteristics[J].Chinese Journal of Geophysics,2018,61(8):3374-3384.
    [17]杨小慧,李德春,于鹏飞.煤层中瑞利型导波的能量分布[J].煤田地质与勘探,2011,39(4):64-66.YANG Xiaohui,LI Dechun,YU Pengfei. Amplitude-depth distribution of Rayleigh channel wave[J].Coal Geology and Exploration,2011,39(4):64-66.
    [18]李刚,王季,牛欢,等.透射槽波探测煤矿陷落的方法及应用[J].煤炭技术,2016,35(12):135-137.LI Gang,WANG Ji,NIU Huan,et al. Method and application of transmitted in-seam wave in detecting mine collapse[J]. Coal Technology,2016,35(12):135-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700