复掺粉煤灰和硅粉抗冲磨混凝土配合比设计及抗裂性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mix Parameter Design and Crack Resistance of Abrasion Resistant Concrete with Fly Ash and Silica Power
  • 作者:高浩 ; 曾力
  • 英文作者:GAO Hao;ZENG Li;State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University;
  • 关键词:抗冲磨混凝土 ; 抗裂性 ; 脆性系数 ; 干缩率
  • 英文关键词:abrasion resistant concrete;;crack resistance;;brittleness index;;shrinkage rate
  • 中文刊名:ZNSD
  • 英文刊名:China Rural Water and Hydropower
  • 机构:武汉大学水资源与水电工程科学国家重点实验室;
  • 出版日期:2017-09-15
  • 出版单位:中国农村水利水电
  • 年:2017
  • 期:No.419
  • 基金:国家大坝安全工程技术研究中心项目(2410100032)
  • 语种:中文;
  • 页:ZNSD201709036
  • 页数:6
  • CN:09
  • ISSN:42-1419/TV
  • 分类号:169-173+177
摘要
抗冲磨混凝土(Abrasion Resistant Concrete)的抗裂性在学术上研究得较少。研究认为针对高水头、高速挟沙水流,抗冲磨混凝土的抗裂性应作为主要耐久性指标。为此设计了一系列不同配合比的抗冲磨混凝土,以脆性系数、干缩率2种指标,探讨了粉煤灰和硅粉对抗冲磨混凝土抗裂性能的影响。结果表明:在掺20%FA、20%FA+(5%、8%、10%)SF的水泥胶凝材料浆体中,脆性系数与干缩率较小,水化产物以水化硅酸钙占主体,浆体结构致密,充分说明粉煤灰和硅粉可优化浆体结构,对提高抗冲磨混凝土的抗裂性有利。
        Little research has been done on the crack resistance of abrasion resistant concrete. Studies suggest that for high head and highspeed sediment-laden flow,the crack resistance of abrasion resistant concrete should be the principal indicators of durability. This paper designs a series of abrasion resistant concrete with different mixing ratios. using brittleness index and shrinkage rate are used to study the effect of fly ash and silicon powder on abrasion resistant concrete. The results show that doped 20% FA,20% FA +( 5%,8%,10%) SF of cement binder slurry,brittleness index and shrinkage rate are small,hydration products account for most of C-S-H phases,paste compact,fully illustrate auxiliary cementing material optimization slurry structure,improve the transition region,so as to improve the crack resistance of abrasion resistant concrete.
引文
[1]李光宇,张海燕,曹四伟.水工混凝土抗冲磨材料的应用进展[J].路基工程,2009,(2):165-166.
    [2]张光碧,王玉强,谢玉杰,等.水工抗冲磨高性能混凝土外掺料合理用量的探讨[J].四川水力发电,2007,(8):73-76.
    [3]郝枫楠,杜应吉,时方稳.严寒地区高性能抗冲磨试验研究[J].中国农村水利水电,2011,(10):115-118.
    [4]陈改新.高速水流下新型高抗冲耐磨材料的新进展[J].水力发电,2006,32(3):56-59.
    [5]水电部水工混凝土耐久性调查组.全国水工混凝土建筑物及病害处理调查总结报告[R].1987-05.
    [6]覃维祖.高强混凝土与高性能混凝土的配制与浇筑[J].建筑技术,1999,30(1):17-18.
    [7]林育强,李家正,杨华全.原材料对抗冲磨混凝土抗裂性能影响的研究[J].人民长江,2008,39(24):69-70.
    [8]Paul P Kraai.A proposed test to determine the cracking potential due to drying shrinkage of concrete[J].Concrete Construction,1985,30(9):775-778.
    [9]Ronit Bloom,Amon Bentur.Free and restrained shrinkage of normal and high-strength concretes[J].Materials Journal,1995,92(2):211-217.
    [10]Richard W Burrows.The visible and invisible cracking of concrete[M].Farmington Hills,Michigan:Published by the American Concrete Institute,1996-10.
    [11]杨春光,王正中,田江永.水工混凝土抗冲磨性能试验研究[J].人民黄河,2006,28(4):73-74.
    [12]冯建林,贺双喜,刘晓波.C60抗冲磨混凝土在水电站的应用[J].云南水力发电,2013,29(4):31-34.
    [13]冯乃谦.高性能混凝土[M].北京:中国建筑工业出版社,1996.
    [14]Soutsos M N,Domone P L J.Design of high-strength concrete mixed with normal weigth aggregates[C]∥Prpc.of the 3d international sysposiumon utilization of high-strength concrete.Norway,1993.
    [15]Domone P L J,Soutsos M N.An approach to the proportioning of high-strength concrete mixes[J].Concrete International,1994,(10).
    [16]丁琳.硅粉混凝土配合比优化的研究[D].哈尔滨:东北林业大学,2007:82-83.
    [17]内维尔A M.混凝土的性能[M].北京:中国建筑工业出版社,1983.
    [18]曾力,刘数华,吴定燕.提高碾压混凝土抗裂性能的试验研究[J].水力发电学报,2004,23(5):32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700