等强度条件下矿物掺合料对混凝土热学性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Mineral Admixtures on Thermal Properties of Concrete under Constant Intensity
  • 作者:易鹏 ; 李晓庆 ; 杨升
  • 英文作者:Yi Peng;Li Xiaoqing;Yang Shen;College of Hydraulic and Civil Engineering, Xinjiang Agricultural University;
  • 关键词:等强度 ; 水化热 ; 绝热温升 ; 矿物掺合料
  • 英文关键词:constant intensity;;hydration heat;;adiabatic temperature rise;;mineral admixtures
  • 中文刊名:FMLE
  • 英文刊名:Fly Ash Comprehensive Utilization
  • 机构:新疆农业大学水利与土木工程学院;
  • 出版日期:2018-04-25
  • 出版单位:粉煤灰综合利用
  • 年:2018
  • 期:No.168
  • 基金:国家自然基金项目资助(51541909)
  • 语种:中文;
  • 页:FMLE201802002
  • 页数:5
  • CN:02
  • ISSN:13-1187/TU
  • 分类号:7-11
摘要
在等强度(C45、C60)条件下,分别利用了水化热测定仪和混凝土绝热温升双曲线表达式研究了矿物掺合料对混凝土中胶凝材料水化热及对混凝土绝热温升的影响,研究结果表明:掺入大掺量的矿物掺合料可以有效的降低混凝土中胶凝材料的水化热和混凝土的绝热温升,从降低水化热的效果上来看,降低水化热的效果排序则为:单掺粉煤灰>复掺粉煤灰与矿粉>单掺矿粉;在28d时,C60混凝土的绝热温升从整体上高于C45混凝土,但是混凝土绝热温升减小的幅度(分别不超过9.6%、6.1%和10.6%)不是很明显。
        In the same intensity, C45, C60, conditions, the effects of mineral admixtures on the hydration heat of cementitious materials in concrete and the adiabatic temperature rise of concrete were studied respectively by using hydration calorimeter and concrete adiabatic temperature rise hyperbolic expression. The results of the study shows that: the incorporation of high content of mineral admixture effectively reduces the heat of cementitious material hydration heat and concrete adiabatic temperature rises, reducing the effect of hydration heat from the effect of reducing heat of hydration The effect order is as follows: single mixed fly ash > double mixed fly ash and mineral powder > single mixed mineral powder; at 28 days, the adiabatic temperature rise of C60 concrete is generally higher than that of C45 concrete, but the decrease of concrete adiabatic temperature rise, ess than 9.6 %, 6.1 % and 10.6 % respectively, is not obvious.
引文
[1]KASZYNSKA M.Early age properties of high-strength/highperformance concrete[J].Cement&Concrete Composites,2002,24(2):253-261.
    [2]冯乃谦.混凝土与混凝土结构耐久性[M].北京:机械工程出版社,2009.
    [3]Wu S,Huang D,Lin F B,et al.Estimation of cracking risk of concrete at early age based on thermal stress analysis[J].Journal of Thermal Analysis&Calorimetry,2011,105(1):171-186.
    [4]Raoufi K,Schlitter J,Bentz D,et al.Parametric Assessment of Stress Development and Cracking in Internally Cured Restrained Mortars Experiencing Autogenous Deformations and Thermal Loading[J].Advances in Civil Engineering,2011,2011(1687-8086):1-16.
    [5]Freitas JAT,Cuong PT,Faria R,et al.Modelling of cement hydration in concrete structures with hybrid finite elements[J].Finite Elements in Analysis and Design,2013,77(3):16-30.
    [6]胡章贵.大体积混凝土温度裂缝的成因与控制[J].中国科技信息,2011(,08):78-79.
    [7]李虹燕,丁铸,邢锋,陈波.粉煤灰、矿渣对水泥水化热的影响[J].混凝土,2008(,10):54-57.
    [8]吴景晖,董维佳.掺矿渣粉、粉煤灰对水泥水化热的影响[J].粉煤灰,2005(,06):20-25.
    [9]杨华全,董维佳,林育强.粉煤灰与矿渣粉对水泥水化热及胶砂强度影响[J].人民长江,2007(,05):108-111.
    [10]王甲春,阎培渝,韩建国.混凝土绝热温升的实验测试与分析[J].建筑材料学报,2005,(04):4746-451.
    [11]王成启,庄骅,张悦然,陈克伟,汪冬冬.海工自密实高性能混凝土绝热温升试验研究[J].工业建筑,2013,43(03):88-92+155.
    [12]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国水利水电出版社,2012.
    [13]袁润章.胶凝材料:第2版[M].武汉:武汉理工大学出版社,1996.
    [14]中国国家标准化管理委员会.水泥水化热测定方法:GB/T12959-2008[S].北京:中国标准出版社,2008.
    [15]朱伯芳.考虑温度影响的混凝土绝热温升表达式[J].水利发电学报,2003,81(2):69-73.
    [16]朱伯芳.混凝土绝热温升的新计算模型与反分析[J].水利分析,2003(4):29-32.
    [17]陈萍,李兴贵,王有平,郭磊.高性能混凝土绝热温升影响因素的试验研究[J].浙江理工大学学报,2007(,04):461-465.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700