基因编辑新技术最新进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress of CRISPR/Cas9 System for Gene Editing
  • 作者:张梦娜 ; 柯丽萍 ; 孙玉强
  • 英文作者:Zhang Mengna;Ke Liping;Sun Yuqiang;Laboratory of Plant Genome and Coloured Fiber Molecular Improvement, School of Life Sciences,Zhejiang Sci & Tech University;
  • 关键词:基因编辑 ; 锌指核酸酶 ; 转录因子激活样效应物核酸酶 ; CRISPR/Cas9 ; CRISPR/Cpf1
  • 英文关键词:genetic editing;;ZFNs;;TLENs;;CRISPR/Cas9;;CRISPR/Cpf1
  • 中文刊名:XBZZ
  • 英文刊名:Chinese Journal of Cell Biology
  • 机构:浙江理工大学生命科学学院植物基因组学与彩色纤维分子改良实验室;
  • 出版日期:2018-11-26 16:58
  • 出版单位:中国细胞生物学学报
  • 年:2018
  • 期:v.40
  • 基金:国家自然科学基金(批准号:31671738);; 浙江省杭州市科技发展计划(批准号:20160432B06)资助的课题~~
  • 语种:中文;
  • 页:XBZZ201812016
  • 页数:10
  • CN:12
  • ISSN:31-2035/Q
  • 分类号:132-141
摘要
借助基因编辑技术精准编辑植物基因组,得到性状优良、产量高的农作物种质是目前作物分子育种研究的主要趋势。目前主要的CRISPR/Cas9系统是由产脓链球菌的获得性免疫防御系统改编而来,该系统以其编辑高效、操作方便、成本低廉等明显优势在基因编辑技术中脱颖而出,广受青睐。利用CRISPR/Cas技术编辑作物基因组,能精确引入和改良目标性状,为作物遗传育种提供新途径。当前, CRISPR/Cas9技术在拟南芥、水稻、土豆、玉米等植物中得到普遍应用。该文简要阐述了锌指核酸酶、转录因子激活样效应物核酸酶以及CRISPR/Cas9系统的结构、作用机制及差异,重点综述CRISPR/Cas9系统目前在植物中的应用、其改良的CRISPR/Cpf1技术以及该系统相比于其他核酸酶的优势与局限性。
        Accurate editing of plant genomes using genetic editing techniques is a very important method for plant molecular breeding to improve crop traits and yields. The CRISPR/Cas9 system is originated from the acquired immune defense system of Pseudomonas aeruginosa. Because of its high efficiency, easy operation and low cost, the system stands out from many gene editing technologies and is widely favored by researchers. Using CRISPR/Cas9 technology to edit crop genomes for accurately introducing or improving target traits provides a new approach to crop genetics and breeding. It has been reported that CRISPR/Cas9 technology has been widely used in Arabidopsis, rice, potato, corn and other crops. This paper briefly describes the structure, mechanism and differences of zinc finger nuclease(ZFN), transcriptional activation-like effector nuclease(TALEN), CRISPR/Cas9 system, focusing on the progress of the CRISPR/Cas9 system, its improved CRISPR/Cpf1 technology and its advantages as well as limitations compared to other nucleases.
引文
1 Kamburova VS,Nikitina EV,Shermatov SE,BurievZT.Genome editing in plants:an overview of tools and applications.Int JAgron 2017;7:1-15.
    2 Liang Z,Zhang K,Chen K,Gao C.Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system.J Genet Genomics 2014;41(2):63-8.
    3 Van Gent DC,Van Der Burg M.Non-homologous end-joining,a sticky affair.Oncogene 2007;26(56):7731-40.
    4 Mahfouz MM,Li L,Shamimuzzaman M,Wibowo A,Fang X,Zhu JK.De novo-engineered transcription activator-like effector(TALE)hybrid nuclease with novel DNA binding specificity creates double-strand breaks.Proc Natl Acad Sci 2011;108(6):2623-8.
    5 Bibikova M,Beumer K,Trautman JK,Carroll D.Enhancing gene targeting with designed zinc finger nucleases.Science2003;300(5620):764.
    6 Pavletich NP,Pabo CO.Zinc finger-DNA recognition:Crystal structure of a Zif268-DNA complex at 2.1?.Science 1991;252(5007):809-17.
    7 Wah DA,Bitinaite J,Schildkraut L.Aggarwal AK.Structure of FokI has implications for DNA cleavage.Proc Natl Acad Sci USA 1998;95(18):10564-9.
    8 Davies JP,Kumar S,Sastry-Dent L.Use of zinc-finger nucleases for crop improvement.Prog Mol Biol Transl Sci 2017;149:47-63.
    9 Shukla VK,Doyon Y,Miller JC,DeKelver RC,Moehle EA,Worden SE,et al.Precise genome modification in the crop species Zea mays using zinc-finger nucleases.Nature 2009;459(7245):437-41.
    10 Carbery ID,D.Ji D,Harrington A,Brown V,Weinstein EJ,et al.Targeted genome modification in mice using zinc-finger nucleases.Genetics 2010;186:451-9.
    11 Curtin SJ,Zhang F,Sander JD,Haun WJ,Starker C,Baltes NJ,et al.Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases.Plant Physiol 2011;156(20):466-73.
    12 Cui X,Ji D,Fisher DA,Wu Y,Briner DM,Weinstein EJ.Targeted integration in rat and mouse embryos with zinc-finger nucleases.Nat Biotechnol 2011;29(1):64-8.
    13 Carroll D,Beumer KJ,Trautman JK.High-efficiency gene targeting in Drosophila with zinc finger nucleases.Humana Press2010;649(4):271-80.
    14 Lamb BM,Mercer AC,Barbas CF.Directed evolution of the TALE N-terminal domain for recognition of all 5’bases.Nucleic Acids Res 2013;41(21):9779-85.
    15 Boch J,Bonas U.Xanthomonas AvrBs3 family-type III effectors:discovery and function.Annu Rev Phytopathol 2010;48(1):419-36.
    16 Yu Y,Streubel J,Balzergue S,Champion A,Boch J,Koebnik R,et al.Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv.oryzae depends on a new TAL effector that induces the rice nodulin-3 Os11N3 gene.Mol Plant Microbe Interact 2011;24(9):1102-13.
    17 Boch J,Scholze H,Schornack S,Landgraf A,Hahn S,Kay S,et al.Breaking the code of DNA binding specificity of TAL-type IIIeffectors.Science 2009;326(5959):1509-12.
    18 Moscou MJ,Bogdanove AJ.A simple cipher governs DNArecognition by TAL effectors.Science 2009;326(5959):1501.
    19 Yuan M,Ke Y,Huang R,Ma L,Yang Z,Chu Z,et al.A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria.Elife 2016;29:5.
    20 Renyan Huang,Shugang Hui,Meng Zhang,Pei Li,Jinghua Xiao,Xianghua Li,et al.A conserved basal transcription factor is required for the function of diverse TAL effectors in multiple plant hosts.Front Plant Sci 2017;8:1919.
    21 Ishino Y,Shinagawa H,Makino K,Amemura M,Nakata A.Nucleotide sequence of the iap gene,responsible for alkaline phosphatase isozyme conversion in Escherichia coli,and identification of the gene product.J Bacteriol 1987;169(12):5429-33.
    22 Jansen R,van Embden JDA,Gaastra W,Schouls LM.Identification of genes that are associated with DNA repeats in prokaryotes.Mol Microbiol 2002;43(6):1565-75.
    23 Hsu PD,Lander ES,Zhang F.Development and applications of CRISPR-Cas9 for genome engineering.Cell 2014;157(6):1262-78.
    24 Makarova K,Wolf Y,Koonin E.The basic building blocks and evolution of CRISPR-Cas systems.Biochem Soc Trans 2013;41(6):1392-400.
    25 Wang R,Preamplume G,Terns MP,Terns RM,Li H.Interaction of the Cas6 riboendonuclease with CRISPR RNAs:Recognition and cleavage.Structure 2011;19(2):257-64.
    26 Anantharaman V,Iyer LM,Aravind L.Presence of a classical RRM-fold palm domain in Thg1-type 3′-5′nucleic acid polymerases and the origin of the GGDEF and CRISPRpolymerase domains.Biol Direct 2010 30;5:43.
    27 Brouns SJ,Jore MM,Lundgren M,Westra ER.Slijkhuis RJ,Snijders AP,et al.Small CRISPR RNAs guide antiviral defense in prokaryotes.Science 2008;321(5891):960-4.
    28 Deltcheva E,Chylinski K,Sharma CM,Gonzales K,Chao Y,Pirzada ZA,et al.CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III.Nature 2011;471(7340):602-7.
    29 Godde JS,Bickerton A.The repetitive DNA elements called CRISPRs and their associated genes:Evidence of horizontal transfer among prokaryotes.J Mol Evol 2006;62(6):718-29.
    30 Barrangou R,Marraffini LA.CRISPR-cas systems:Prokaryotes upgrade to adaptive immunity.Mol Cell 2014;54(2):234-44.
    31 Mohanraju P,Makarova KS,Zetsche B,Zhang F,Koonin EV,van der Oost J.Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems.Science 2016;353(6299):aad5147.
    32 Gasiunas G,Barrangou R,Horvath P,Siksnys V.Cas9-crRNAribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria.Proc Natl Acad Sci USA 2012;109(39):E2579-86.
    33 Luo M,Gilbert B,Ayliffe M.Applications of CRISPR/Cas9technology for targeted mutagenesis,gene replacement and stacking of genes in higher plants.Plant Cell Rep 2016;35(7):1439-50.
    34 Jinek M,Chylinski K,Fonfara I,Hauer M,Doudna JA,Charpentier E.A programmable dual-RNA-guided DNAendonuclease in adaptive bacterial immunity.Science 2012;337(6096):816-21.
    35 Shan Q,Wang Y,Li J,Gao C.Genome editing in rice and wheat using the CRISPR/Cas system.Nat Protoc 2014;9(10):2395-410.
    36 Xing HL,Dong L,Wang ZP,Zhang HY,Han CY,Liu B,et al.A CRISPR/Cas9 toolkit for multiplex genome editing in plants.BMC Plant Biol 2014;14:327.
    37 Wang S,Zhang S,Wang W,Xiong X,Meng F,Cui X.Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system.Plant Cell Rep 2015;34(9):1473-6.
    38 Brooks C,Nekrasov V,Lippman ZB,Van Eck J.Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic pepeats/CRISPR-associated 9 system.Plant Physiol 2014;166(3):1292-7.
    39 Janga MR,Campbell LM,Rathore KS.CRISPR/Cas9-mediated targeted mutagenesis in upland cotton(Gossypium hirsutum L.).Plant Mol Biol 2017;94(4/5):349-60.
    40 Liang Zhen,Kang Zhang,Kunling Chen,Caixia Gao.Targeted mutagenesis in zea mays using TALENs and the CRISPR/Cas system.J Genet Genomics 2014;41(2):63-8.
    41时欢,林玉玲,赖钟雄,杜宜殷,黄鹏林.CRISPR/Cas9介导的植物基因编辑技术研究进展.应用与环境生物学报(Shi Huan,Lin Yuling,Lai Zhongxiong,Du Yiyin,Huang Penlin.Progress of CRISPR/Cas9 mediated plant gene editing technology.Chinese Journal of Applied And Environmental Biology)2018;1006(687):498-513.
    42 Jiang W,Bikard D,Cox D,Zhang F,Marraffini LA.RNA-guided editing of bacterial genomes using CRISPR-Cas systems.Nat Biotechnol 2013;31(3):233-9.
    43 Kosicki M,Tomberg K,Bradley A.Repair of CRISPR-Cas9-induced double-stranded breaks leads to large deletions and complex rearrangements.Nat Biotechnol 2018;doi:10.1038/nbt.4192.
    44 Zetsche B,Gootenberg JS,Abudayyeh OO,Slaymaker IM,Makarova KS,Essletzbichler P,et al.Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system.Cell2015;163(3):759-71.
    45 Zou X,Jiang X,Xu L,Lei T,Peng A,He Y,et al.Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing.Plant Mol Biol 2017;93(4/5):341-53.
    46杨帆,李寅.新一代基因组编辑系统CRISPR/Cpf1.生物工程学报(Yang Fan,Li Yan.Next generation genome editing system CRISPR/Cpf1.Chinese Journal of Biotechnology)2017;33(3):361-71
    47 Lei C,Li YS,Liu JK,Zheng X,Zhao GP,Jin W.The CCTL(Cpf1-assisted cutting and Taq DNA ligase-assisted ligation)method for efficient editing of large DNA constructs in vitro.Nucleic Acids Res 2017;45(9):e74.
    48 Kim D,Kim J,Hur JK,Been KW,Yoon SH,Kim JS.Genomewide analysis reveals specificities of Cpf1 endonucleases in human cells.Nat Biotechnol 2016;34(8):863-8.
    49 van Overbeek M,Capurso D,Carter MM,Thompson MS,Frias E,Russ C,et al.DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks.Mol Cell 2016;63(4):633-46.
    50 Hu X,Wang C,Liu Q,Fu Y,Wang K.Targeted mutagenesis in rice using CRISPR-Cpf1 system.J Genet Genomics 2017;44(1):71-3.
    51 Horvath P,Barrangou R.CRISPR/Cas,the immune system of Bacteria and Archaea.Science 2010;327(5962):167-70.
    52 Paul JW,Qi Y.CRISPR/Cas9 for plant genome editing:accomplishments,problems and prospects.Plant Cell Rep 2016;35(7):1417-27.
    53 Ledford H.Powerful enzyme could make CRISPR gene-editing more versatile.Nature 2018;556:57-63
    54 Wang M,Mao Y,Lu Y,Tao X,kang Zhu J.Multiplex gene editing in rice using the CRISPR-Cpf1 system.Mol Plant 2017;10(7):1011-3.
    55 Kim SK,Kim H,Ahn W,Park K,Lee D,Lee S.Efficient transcriptional gene repression by Type V-A CRISPR-Cpf1 from eubacterium eligens.ACS Synth Biol 2017;6(7):1273-82.
    56 Gootenberg JS,Abudayyeh OO,Kellner MJ,Collins JJ,Zhang F.Multiplexed and portable nucleic acid detection platform with Cas13,Cas12a,and Csm6.Science 2018;360(6387):439-44.
    57 Xu S,Cao S,Zou B,Yue Y,Gu C,Chen X,et al.An alternative novel tool for DNA editing without target sequence limitation:The structure-guided nuclease.Genome Biol 2016;17(1):186.
    58黄娟,邓国富,高利军,高菊,卿冬进,朱昌兰.CRISPR/Cas9基因编辑系统在作物育种研究中的应用进展.南方农业学报(Huang Juan,Deng Guofu,Gao Lijun,Gao Ju,Qin Dongjin,Zhu Changlan.Progress in the application of CRISPR/Cas9 gene editing system in crop breeding.Journal of Southern Agriculture)2018;49(1):14-21.
    59沈春修,廖锦风,却志群,刘莹.CRISPR/Cas9定点编辑水稻基因位点及靶修饰位点遗传稳定性研究.核农学报(Shen Chunxiu,Miao Jinfeng,Que Zhiqun,Liu Ying.Genetic stability of rice gene locus and target modification locus by CRISPR/Cas9.Journal of Nuclear Agriculture Science)2018;32(6):1041-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700