溶胶-凝胶法制备TiO_2-SiO_2混合微球腔的激发高阶回音壁模式
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-Order Whispering Gallery Modes in TiO_2-SiO_2 Hybrid Microsphere Cavity Prepared with Sol-Gel Method
  • 作者:柯超 ; 许灿华 ; 黄衍堂 ; 马靖
  • 英文作者:Ke Chaozhen;Xu Canhua;Huang Yantang;Ma Jing;College of Physics and Information Engineering, Fuzhou University;
  • 关键词:光谱学 ; 高阶回音壁模式 ; 溶胶-凝胶法 ; 混合微球腔 ; 谐振调节 ; TiO_2薄膜
  • 英文关键词:spectroscopy;;high-order whispering gallery mode;;sol-gel method;;hybrid microsphere cavity;;resonance-tailoring;;TiO_2 film
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:福州大学物理与信息工程学院;
  • 出版日期:2018-11-23 10:15
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.506
  • 语种:中文;
  • 页:JJZZ201902040
  • 页数:7
  • CN:02
  • ISSN:31-1339/TN
  • 分类号:295-301
摘要
采用电极火花放电法和溶胶-凝胶法制备了直径均为206μm的SiO_2微球腔和TiO_2-SiO_2混合微球腔,测得它们在1550 nm处的品质因子分别为2.15×10~7和1.36×10~6。宽带谐振透射谱显示,与相同尺寸的SiO_2微球腔相比,混合腔中高阶回音壁模式的谐振峰吸收深度比增大,有效激发了高阶模式;另外,谐振波长平均红移了0.706 nm,对应的自由光谱范围减小了0.020 nm,表明TiO_2薄膜能有效调节SiO_2微球腔的谐振特性。直径为134μm的微球腔的谐振波长平均红移量和自由光谱范围平均减小量分别为1.012 nm和0.022 nm,表明小尺寸微球腔具有更强的谐振调节能力。
        The SiO_2 microsphere cavity and the TiO_2-SiO_2 hybrid microsphere cavity with diameters of 206 μm are prepared with the electrode spark discharge method and the sol-gel method. The Q values of two microsphere cavities at 1550 nm are 2.15×10~7 and 1.36×10~6, respectively. The broadband resonant transmission spectra show that compared with those in the same size of SiO_2 microsphere cavity,the absorption depth ratios of the resonant peaks of the high-order whispering gallery modes in the hybrid microsphere cavity increase obviously, indicating that the high-order modes are effectively excited. Moreover, the average red shift of the resonant wavelengths is 0.706 nm and the corresponding free spectral range is reduced by 0.020 nm, indicating that the resonant characteristics of the SiO_2 microsphere cavity can be effectively tailored by the TiO_2 film. The average red shift of resonant wavelength and the average reduction of free spectral range of the microsphere cavity with a diameter of 134 μm are 1.012 nm and 0.022 nm, respectively, indicating that small size microsphere cavities have strong resonance-tailoring capability.
引文
[1] Zou C L, Dong C H, Cui J M,et al. Whispering gallery mode optical microresonators: fundamentals and applications[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2012, 42(11): 1155-1175. 邹长铃, 董春华, 崔金明, 等. 回音壁模式光学微腔:基础与应用[J]. 中国科学: 物理学力学天文学, 2012, 42(11): 1155-1175.
    [2] Lü X M, Huang Y Z, Zou L X, et al. Unidirectional-emission circular microcavity laser with radius of 5 μm[J]. Chinese Journal of Lasers, 2017, 44(9): 0901010. 吕晓萌, 黄永箴, 邹灵秀, 等. 半径5 μm的定向输出圆盘形微腔激光器[J]. 中国激光, 2017, 44(9): 0901010.
    [3] Liu B B, Zhang M, Wu G Z. Mode properties and sensing technology of silica capillary ellips-microbubble[J]. Acta Photonica Sinica, 2016, 45(11): 1128002. 刘彬斌, 张蒙, 吴根柱. 石英毛细管椭球微气泡模式特性及传感技术[J]. 光子学报, 2016, 45(11): 1128002.
    [4] Gui L, Zuo J C, Wu Z L, et al. A steady model of silicon based microring including nonlinear optical effects[J]. Acta Optica Sinica, 2018, 38(4): 0419001. 桂林, 左健存, 吴中林, 等. 一种包含非线性光学效应的硅基微环稳态模型[J]. 光学学报, 2018, 38(4): 0419001.
    [5] Guo C L. Research on nonlinear optics and its applications in whispering gallery mode microresonators[D]. Xiamen: Xiamen University, 2016. 郭长磊. 回音壁模微腔中非线性光学及其应用的研究[D]. 厦门: 厦门大学, 2016.
    [6] Xiong Z T, Ruan J, Li R Y, et al. Soliton formation with controllable frequency line spacing using dual pumps in a microresonator[J]. Chinese Optics Letters, 2016, 14(12): 121903.
    [7] Meng F, Cao S Y, Zhao G Z, et al. Application of an Er\:doped fiber comb for Sr lattice clock[J]. Chinese Journal of Lasers, 2015, 42(7): 0702012. 孟飞, 曹士英, 赵光贞, 等. 掺铒光纤光梳在锶晶格钟中的应用研究[J]. 中国激光, 2015, 42(7): 0702012
    [8] Swanson E A, Huang D, Lin C P, et al. High-speed optical coherence domain reflectometry[J]. Optics Letters, 1992, 17(2): 151-153.
    [9] Yan Y Z, Ji Z, Wang B H, et al. Evanescent wave excitation of microsphere high-Q model using tapered fiber[J]. Chinese Journal of Lasers, 2010, 37(7): 1789-1793. 严英占, 吉喆, 王宝花, 等. 锥形光纤倏逝场激发微球腔高Q模式[J]. 中国激光, 2010, 37(7): 1789-1793.
    [10] Shen X Q, Beltran R C, Diep V M, et al. Low-threshold parametric oscillation in organically modified microcavities[J]. Science Advances, 2018, 4(1): eaao4507.
    [11] Wang Y W, Zhang M M, Xia L, et al. Progress in dispersion control of micro-ring resonator-based optical frequency comb generation[J]. Laser & Optoelectronics Progress, 2014, 51(6): 060001. 王元武, 张敏明, 夏历, 等. 基于微环谐振腔产生光频梳的色散控制的研究进展[J]. 激光与光电子学进展, 2014, 51(6): 060001.
    [12] Savchenkov A A, Rubiola E, Matsko A B, et al. Phase noise of whispering gallery photonic hyper-parametric microwave oscillators[J]. Optics Express, 2008, 16(6): 4130-4144.
    [13] Savchenkov A A, Matsko A B, Liang W, et al. Kerr combs with selectable central frequency[J]. Nature Photonics, 2011, 5(5): 293-296.
    [14] Guo X, Zou C L, Jung H, et al. Efficient generation of a near-visible frequency comb via Cherenkov-like radiation from a Kerr microcomb[J]. Physical Review Applied, 2018, 10(1): 014012.
    [15] Duchiron G, Cros D, Guillon P, et al. Mode selection for a whispering gallery mode resonator[J]. Electronics Letters, 1999, 32(7): 44-46.
    [16] Ding M, SenthilM G, Brambilla G, et al. Whispering gallery mode selection in optical bottle microresonators[J]. Applied Physics Letters, 2012, 100(8): 081108.
    [17] Lu Q J, Wu X, Liu L Y, et al. Mode-selective lasing in high-Q polymer micro bottle resonators[J]. Optics Express, 2015, 23(17): 22740-22745.
    [18] Tong K, Dang P, Wang M T, et al. Enhancement of sensitivity of photonic crystal fiber surface plasmon resonance biosensor using TiO2 film[J]. Chinese Journal of Lasers, 2018, 45(6): 0610002. 童凯, 党鹏, 汪梅婷, 等. 采用TiO2薄膜增强光子晶体光纤表面等离子体共振生物传感器灵敏度的建模分析[J]. 中国激光, 2018, 45(6): 0610002.
    [19] Jia Q Y, Le Y Q, Tang Y X, et al. Broadband and scratch-resistant antireflective coating composed of SiO2/TiO2 prepared from sol-gel processing[J]. Acta Optica Sinica, 2004, 24(1): 65-69. 贾巧英, 乐月琴, 唐永兴, 等. 溶胶-凝胶法制备耐磨宽带SiO2/TiO2增透膜[J]. 光学学报, 2004, 24(1): 65-69.
    [20] Zhang Q H, Zhou L, Yang W, et al. Sol-gel preparation of a silica antireflective coating with enhanced hydrophobicity and optical stability in vacuum[J]. Chinese Optics Letters, 2014, 12(7): 071601.
    [21] Ding Y, Fan H B, Zhang X, et al. Ultralow-threshold neodymium-doped microsphere lasers on a silicon chip[J]. Optics Communications, 2017, 395: 51-54.
    [22] Li M. Study on the optical properties of high-Q whispering-gallery-mode micro-bubble resonators[D]. Shanghai: Fudan University, 2014. 李明. 高Q回音壁模式微泡光学谐振腔的光学特性研究[D]. 上海: 复旦大学, 2014.
    [23] Yan Y Z, Zou C L, Yan S B, et al. Packaged silica microsphere-taper coupling system for robust thermal sensing application[J]. Optics Express, 2011, 19(7): 5753-5759.
    [24] Hagness S C, Rafizadeh D, Ho S T, et al. FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators[J]. Journal of Lightwave Technology, 1997, 15(11): 2154-2165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700