NaCl胁迫下3种柽属植物生长、盐离子分布和SOS1基因相对表达量的比较
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparisons on growth,salt ion distribution,and relative expression of SOS1 gene in three species of Tamarix Linn. under NaCl stress
  • 作者:刘咏梅 ; 程聪 ; 姜黎 ; 於丙军
  • 英文作者:LIU Yongmei;CHENG Cong;JIANG Li;YU Bingjun;College of Life Sciences,Nanjing Agricultural University;Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences;
  • 关键词: ; NaCl胁迫 ; 耐盐机制 ; 生长 ; 盐离子分布 ; SOS1基因
  • 英文关键词:Tamarix Linn.;;NaCl stress;;salt-tolerant mechanism;;growth;;salt ion distribution;;SOS1 gene
  • 中文刊名:ZWZY
  • 英文刊名:Journal of Plant Resources and Environment
  • 机构:南京农业大学生命科学学院;中国科学院新疆生态与地理研究所;
  • 出版日期:2019-02-25
  • 出版单位:植物资源与环境学报
  • 年:2019
  • 期:v.28
  • 基金:国家自然科学基金联合项目(U1603111);; 江苏省研究生科研与实践创新计划项目(KYCX18_0746)
  • 语种:中文;
  • 页:ZWZY201901001
  • 页数:9
  • CN:01
  • ISSN:32-1339/S
  • 分类号:3-11
摘要
以甘肃柽(Tamarix gansuensis H. Z. Zhang)、多枝柽(T.ramosissima Ledeb.)和细穗柽(T.leptostachys Bunge)为研究对象,采用液体培养法对100、200和300 mmol·L~(-1) NaCl胁迫20 d后3种植物的生长和盐离子分布进行了比较;在此基础上,对300 mmol·L~(-1) NaCl胁迫30 d后3种植物的生长和生理指标以及300 mmol·L~(-1) NaCl胁迫0、3、6、12和24 h后3种植物地上部和根中SOS1基因的相对表达量进行了比较。结果表明:与0 mmol·L~(-1) NaCl(对照)相比,3种植物的株高和单株干质量在100 mmol·L~(-1) NaCl胁迫下升高,但在300 mmol·L~(-1) NaCl胁迫下降低。随着NaCl浓度提高,3种植物地上部和根的Na~+和Cl~-含量和Na~+/K~+比逐渐升高,而K~+含量逐渐下降,其中细穗柽地上部和根的Na~+和Cl~-含量及Na~+/K~+比较高。与对照相比,300 mmol·L~(-1) NaCl胁迫下3种植物地上部表面泌盐明显增多,叶绿素a、叶绿素b、总叶绿素和类胡萝卜素含量基本上显著(P<0.05)升高,但植株生长受到明显抑制,根系活力、地上部相对含水量和地上部离体失水率明显下降。总体来看,多枝柽的相对株高增长量最大,根冠比最小,地上部相对含水量和地上部离体失水率降幅均最小,说明其地上部生长受NaCl胁迫的抑制程度较小。300 mmol·L~(-1) NaCl胁迫0 h,3种植物地上部和根中SOS1基因的相对表达量无明显差异,但在胁迫24 h不同程度升高,其中多枝柽地上部中SOS1基因的相对表达量增幅最大,其根中SOS1基因的相对表达量增幅也较大。总体来看,3种植物的耐盐能力均较强,NaCl胁迫对多枝柽的影响最小,因此,可将多枝柽作为柽属(Tamarix Linn.)植物耐盐生理和分子机制研究的备选材料。
        Taking Tamarix gansuensis H. Z. Zhang, T. ramosissima Ledeb., and T. leptostachys Bunge as research objects, growth and salt ion distribution of three species were compared under 100, 200, and 300 mmol·L~(-1) NaCl stress for 20 d by using liquid cultivation method. On the basis, growth and physiological indexes of three species under 300 mmol·L~(-1) NaCl stress for 30 d and relative expression of SOS1 gene in above-ground part and root under 300 mmol·L~(-1) NaCl stress for 0, 3, 6, 12, and 24 h were compared. The results show that compared with 0 mmol·L~(-1) NaCl(the control), height and dry mass per plant of three species increase under 100 mmol·L~(-1) NaCl stress, but decrease under 300 mmol·L~(-1) NaCl stress. With the increase of NaCl concentration, contents of Na~+ and Cl~- and Na~+/K~+ ratio in above-ground part and root of three species increase gradually, while K~+ content decreases gradually, in which, contents of Na~+ and Cl~- and Na~+/K~+ ratio in above-ground part and root of T. leptostachys are high. Compared with the control, salt excretion on surface of above-ground part of three species increase evidently under 300 mmol·L~(-1) NaCl stress, and contents of chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid basically increase significantly(P<0.05), but plant growth is markedly suppressed, and root vigor, relative water content in above-ground part and water loss rate of above-ground part in vitro decrease obviously. In general, relative height increment of T. ramosissima is the largest, root/shoot ratio is the smallest, and decreasing amplitude of relative water content in above-ground part and water loss rate of above-ground part in vitro are both the smallest, indicating that the suppression degree of growth of its above-ground part under NaCl stress is small. Under 300 mmol·L~(-1) NaCl stress for 0 h, there is no significant difference in relative expression of SOS1 gene in above-ground part and root among three species, but there is an increament at different degrees when stress for 24 h, in which, increasing amplitude of relative expression of SOS1 gene in above-ground part of T. ramosissima is the largest, and that in its root is also large. In general, salt tolerant ability of three species is strong, and the effect of NaCl stress on T. ramosissima is the least, so T. ramosissima can be used as alternative material for studying salt-tolerant physiology and molecular mechanism of Tamarix Linn. species.
引文
[1] 陈晓琴, 王婷, 汪建红. 新疆柽属植物的价值及开发利用建议[J]. 新疆师范大学学报(自然科学版), 2006, 25(3): 100-102.
    [2] 刘铭庭. 中国柽属植物综合研究图文集[M]. 乌鲁木齐: 新疆科学技术出版社, 2014: 1-79.
    [3] 张立宾, 宋曰荣, 吴霞. 柽的耐盐能力及其对滨海盐渍土的改良效果研究[J]. 安徽农业科学, 2008, 36(13): 5424-5426.
    [4] 李. 新疆柽属植物抗盐机理研究[D]. 乌鲁木齐: 新疆农业大学林学与园艺学院, 2002: 5-8.
    [5] 张道远, 尹林克, 潘伯荣. 柽泌盐腺结构、功能及分泌机制研究进展[J]. 西北植物学报, 2003, 23(1): 190-194.
    [6] BOSABALIDIS A M. Programmed cell death in salt glands of Tamarix aphylla L.: an electron microscope analysis[J]. Central European Journal of Biology, 2012, 7: 927-930.
    [7] DASSANAYAKE M, LARKIN J C. Making plants break a sweat: the structure, function, and evolution of plant salt glands[J]. Frontiers in Plant Science, 2017, 8: 406.
    [8] 杨传平. 柽耐盐抗旱分子基础研究[M]. 北京: 科学出版社, 2015: 9-10.
    [9] YUAN F, LYU M J A, LENG B Y, et al. Comparative transcriptome analysis of developmental stages of the Limonium bicolor leaf generates insights into salt gland differentiation[J]. Plant, Cell and Environment, 2015, 38: 1637-1657.
    [10] YUAN F, LENG B, WANG B. Progress in studying salt secretion from the salt glands in recretohalophytes: how do plants secrete salt?[J]. Frontier in Plant Science, 2016, 7: 977.
    [11] ZHU J K. Regulation of ion homeostasis under salt stress[J]. Current Opinion in Plant Biology, 2003, 6: 441-445.
    [12] 於丙军, 刘友良. SOS基因家族与植物耐盐性[J]. 植物生理学通讯, 2004, 40(4): 409-413.
    [13] CHUNG J S, ZHU J K, BRESSAN R A, et al. Reactive oxygen species mediate Na+-induced SOS1 mRNA stability in Arabidopsis[J]. The Plant Journal, 2008, 53: 554-565.
    [14] ZHAO X F, WEI P P, LIU Z, et al. Soybean Na+/H+ antiporter GmsSOS1 enhances antioxidant enzyme activity and reduces Na+ accumulation in Arabidopsis and yeast cells under salt stress[J]. Acta Physiologiae Plantarum, 2017, 39: 19.
    [15] 周玲玲, 祝建波, 曹连莆. 大叶补血草Na+/H+逆向转运蛋白基因(SOS1)的克隆与序列分析[J]. 园艺学报, 2009, 36(9): 1353-1358.
    [16] 荆海瑜, 周扬, 郭晓颖, 等. 木榄细胞膜Na+/H+逆向运输蛋白BgSOS1功能的初步验证[J]. 海南大学学报(自然科学版), 2014, 32(3): 252-259.
    [17] 贾园园, 张春蕊, 王玉成, 等. 刚毛柽Na+/H+逆向转运蛋白基因的克隆与表达分析[J]. 植物研究, 2016, 36(3): 380-387.
    [18] 屈娅娜, 於丙军. 氯离子通道抑制剂对盐胁迫下野生和栽培大豆幼苗离子含量等生理指标的影响[J]. 南京农业大学学报, 2008, 31(2): 17-21.
    [19] ZHOU Q, YU B J. Accumulation of inorganic and organic osmolytes and their role in osmotic adjustment in NaCl-stressed vetiver grass seedlings[J]. Russian Journal of Plant Physiology, 2009, 56: 678-875.
    [20] TIAN F, JIA T J, YU B J. Physiological regulation of seed soaking with soybean isoflavones on drought tolerance of Glycine max and Glycine soja[J]. Plant Growth Regulation, 2014, 74: 229-237.
    [21] WANG C J, YANG W, WANG C, et al. Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains[J]. PLoS One, 2012, 7: e52565.
    [22] WANG L L, CHEN A P, ZHONG N Q, et al. The Thellungiella salsuginea tonoplast aquaporin TsTIP1;2 functions in protection against multiple abiotic stresses[J]. Plant and Cell Physiology, 2014, 55: 148-161.
    [23] SCHMITTGEN T D, LIVAK K J. Analyzing real-time PCR data by the comparative CT method[J]. Nature Protocols, 2008, 3: 1101-1108.
    [24] 杨升, 张华新, 刘涛. 16个树种盐胁迫下的生长表现和生理特性[J]. 浙江农林大学学报, 2012, 29(5): 744-754.
    [25] 刘克东, 郑彩霞, 郝建卿. 甘蒙柽对NaCl胁迫的生理响应[J]. 广东农业科学, 2012(10): 38-42, 55.
    [26] 赵可夫, 冯立田. 中国盐生植物资源[M]. 北京: 科学出版社, 2001: 38-40.
    [27] STOREY R, THOMSON W W. An X-ray microanalysis study of the salt glands and intracellular calcium crystals of Tamarix[J]. Annals of Botany, 1994, 73: 307-313.
    [28] 潘婷婷. 刚毛柽Na+积累及泌盐功能研究[D]. 乌鲁木齐: 新疆农业大学草业与环境科学学院, 2011: 29-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700