氟硅丙烯酸酯/SiO_2纳米杂化粒子的制备及其涂层耐沾污性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and Anti-Stain Performance of Fluorosilicone Acrylate Copolymer Nano-Hybrid Particles
  • 作者:屈佳 ; 白向田 ; 孙健 ; 孟森 ; 梁壮 ; 曹宝月
  • 英文作者:Qu Jia;Bai Xiangtian;Sun Jian;Meng Sen;Liang Zhuang;Cao Baoyue;College of Chemical Engineering and Modern Materials/Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources,Shangluo University;
  • 关键词:纳米杂化粒子 ; 无皂乳液 ; 疏水 ; 耐沾污 ; 涂膜 ; 建筑外墙
  • 英文关键词:nano-hybrid particles;;soap-free emulsion;;hydrophobic;;anti-stain;;coating;;building external wall
  • 中文刊名:TLGY
  • 英文刊名:Paint & Coatings Industry
  • 机构:商洛学院化学工程与现代材料学院/陕西省尾矿资源综合利用重点实验室;
  • 出版日期:2019-01-01
  • 出版单位:涂料工业
  • 年:2019
  • 期:v.49;No.415
  • 基金:陕西省大学生创业训练计划项目(2734);; 陕西省教育厅项目(17SJ035)
  • 语种:中文;
  • 页:TLGY201901003
  • 页数:7
  • CN:01
  • ISSN:32-1154/TQ
  • 分类号:12-18
摘要
以甲基丙烯酸甲酯、丙烯酸丁酯、甲基丙烯酸十二氟庚酯(12FMA)、乙烯基三乙氧基硅烷改性的纳米SiO_2、反应型乳化剂为原料,合成了一种疏水杂化无皂乳液[SiO_2@P (MMA/BA/12FMA)]。研究了反应型乳化剂用量对单体转化率、乳液粒径分布的影响。当乳化剂用量为单体总量3. 5%时,单体转化率可达到95. 9%。当12FMA用量为单体总质量15%、改性SiO_2用量为单体总质量1. 5%时,涂膜表面自由能最低,水接触角达到128. 1°。乳液可在水泥基材表面形成一层疏水防护膜,水接触角可达到144. 4°,防污能力达到水洗满意的效果。
        A hydrophobic hybrid soap-free emulsion is successfully synthesized by methyl methacrylate,butyl acrylate,dodecafluoroheptyl methacrylate( 12 FMA),triethoxyvinylsilane modified SiO_2 and a reactive emulsifier. The influences of dosages of reactive emulsifier on monomer conversion and particle size distribution are explored. The results showed that the monomer conversion can be 95. 9% when the dosage of emulsifier is 3. 5%. When the dosage of 12 FMA is 15% and the dosage of VTES modified SiO_2 is 1. 5%,the coating shows the lowest surface free energy,and the water contact angle is up to 128. 1°. A hydrophobic coating is formed on the cement substrate surface and the water contact angle reaches 144. 4°,meanwhile,the smearing can be cleaned using water.
引文
[1]李芳.酸雨对建筑材料的影响及防治研究综述[J].污染防治技术,2010,23(1):67-69.
    [2]卢金锁,李少杭.建筑外墙的污染及相关因素分析[J].四川建筑科学研究,2014,40(6):302-306.
    [3]刘萍,林益军,艾陈祥.自清洁表面研究进展[J].涂料工业,2016,46(5):76-80.
    [4]YOUNAS H,BAI H W,SHAO J H,et al.Super-hydrophilic and fouling resistant PVDF ultrafiltration membranes based on a facile prefabricated surface[J].Journal of Membrane Science,2017,541:529-540.
    [5]LIU H,HUANG J Y,CHEN Z.Robust translucent superhydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation[J].Chemical Engineering Journal,2017,330:26-35.
    [6]XU Z H,LIU Z,SONG P F,et al.Fabrication of superhydrophobic polypropylene hollow fiber membrane and its application in membrane distillation[J].Desalination,2017,414:10-17.
    [7]AMMAR S,RAMESH K,MA I A W,et al.Studies on Si O2-hybrid polymeric nanocomposite coatings with superior corrosion protection and hydrophobicity[J].Surface and Coatings Technology,2017,324:536-545.
    [8]JEEVAJOTHI K,SUBASRI R,SOMA RAJU K R C.Transparent,non-fluorinated,hydrophobic silica coatings with improved mechanical properties[J].Ceramics International,2013,39:2111-2116.
    [9]YAO W Q,LI Y J,HUANG X Y.Fluorinated poly(meth)acrylate:synthesis and properties[J].Polymer,2014,55(24):6197-6211.
    [10]LICCHELLI M,MALAGODI M,WETHTHIMUNI M L,et al.Water-repellent properties of fluoroelastomers on a very porous stone:effect of the application procedure[J].Progress in Organic Coatings,2013,76:495-503.
    [11]KRONLUND D,LINDN M,SMATT J H.A polydimethylsiloxane coating to minimize weathering effects on granite[J].Construction and Building Materials,2016,124:1051-1058.
    [12]LI J,WEI Y,HUANG Z Y.Electrohydrodynamic behavior of water droplets on a horizontal super hydrophobic surface and its self-cleaning application[J].Applied Surface Science,2017,403:133-140.
    [13]GAO J F,HUANG X W,XUE H G,et al.Facile preparation of hybrid microspheres for super-hydrophobic coating and oil-water separation[J].Chemical Engineering Journal,2017,326:443-453.
    [14]NOSRATI R,OLADA A,NOFOUZI K.A self-cleaning coating based on commercial grade polyacrylic latex modified by Ti O2/Ag-exchanged-zeolite-A nanocomposite[J].Applied Surface Science,2015,346:543-553.
    [15]王舒钟,高柳敬志,斋藤俊.水性FEVE氟碳树脂Lumiflon的开发和应用[J].有机氟工业,2017(1):41-45.
    [16]YIN X,SUN C C,ZHANG B.A facile approach to fabricate superhydrophobic coatings on porous surfaces using cross-linkable fluorinated emulsions[J].Chemical Engineering Journal,2017,330:202-212.
    [17]ASLANIDOU D,KARAPANAGIOTIS I,PANAYIOTOUC.Tuning the wetting properties of siloxane-nanoparticle coatings to induce superhydrophobicity and superoleophobicity for stone protection[J].Materials&Design,2016,108:736-744.
    [18]ZHOU J H,CHEN X,DUAN H.Synthesis and characterization of organic fluorine and nano-Si O2modified polyacrylate emulsifier-free latex[J].Progress in Organic Coatings,2015,89:192-198.
    [19]ZHOU J H,CHEN X,DUAN H.Synthesis and characterization of organic fluorine and nano-Si O2modified polyacrylate emulsifier-free latex[J].Progress in Organic Coatings,2015,89:192-198.
    [20]QU J,LIU J,HE L.Synthesis and evaluation of fluorosilicone modified starch for protection of historic stone[J].Journal of Applied Polymer Science,2015,132:41650.
    [21]LICCHELLI M,MARZOLLA S J,POGGI A,et al.Crosslinked fluorinated polyurethanes for the protection of stone surfaces from graffiti[J].Journal of Cultural Heritage,2011,12(1):34-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700