青海湖流域土壤大孔隙特征与理化性质的相关性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Correlations Between Soil Physical-chemical Proprieties and Soil Macropore Characteristics in Qinghai Lake Basin
  • 作者:李宗超 ; 胡霞 ; 刘勇 ; 孙贞婷 ; 吕艳丽
  • 英文作者:LI Zongchao;HU Xia;LIU Yong;SUN Zhenting;LV Yanli;Key Laboratory of Environmental Change and Natural Disaster,Beijing Normal University;Academy of Disaster Reduction and Emergency Management,Beijing Normal University;
  • 关键词:CT扫描 ; 大孔隙 ; 理化性质 ; 相关性
  • 英文关键词:CT;;Macropores;;Physical-chemical properties;;Correlation
  • 中文刊名:TURA
  • 英文刊名:Soils
  • 机构:北京师范大学环境演变与自然灾害教育部重点实验室;北京师范大学减灾与应急管理研究院;
  • 出版日期:2017-04-15
  • 出版单位:土壤
  • 年:2017
  • 期:v.49;No.288
  • 基金:国家自然科学基金项目(41471018);国家自然科学基金重点项目(41130640)资助
  • 语种:中文;
  • 页:TURA201702024
  • 页数:8
  • CN:02
  • ISSN:32-1118/P
  • 分类号:166-173
摘要
土壤大孔隙是土壤水分、空气和化学物质运移优先流的主要途径。本文以青海湖流域土壤为研究对象,在青海湖沙柳河流域取原状土柱,利用CT扫描与Fiji软件相结合的方法,实现了土壤大孔隙结构的三维可视化,以及断层横截面土壤大孔隙度、大孔隙数量和大孔隙等效直径等的量化;并探讨了样地土壤大孔隙特征与理化性质的相关性。结果表明:青海湖流域土壤大孔隙主要分布在土壤表层0~100 mm,100 mm以下大孔隙较少;土壤全磷含量分别与土壤大孔隙数量、大孔隙等效直径有显著相关性;土壤全氮、有机质含量分别与土壤大孔隙平均等效直径有显著相关性;土壤体积质量与大孔隙度、大孔隙平均等效直径等有显著相关性;土壤中0.002≤Ф<0.02 mm的颗粒含量与大孔隙的分布特征相关性较大。
        Soil macropores are preferential pathways for water,air and chemical substances movement in soils.Undisturbed soil columns under different vegetation types were sampled in Shaliu River Basin of the Qinghai Lake and scanned with X-ray computed tomography.And 3D soil macropore networks were visualized and macropore quantity,macroporosity and equivalent diameter were interpreted with Fiji software through reconstruction.Then the correlations between soil physicalchemical properties and macropore characteristics were studied.The results indicated that soil macropores were mainly distributed in the 0–100 mm layer of soil,soil phosphorus was significantly correlated with number and mean equivalent diameter of macropores,soil nitrogen and organic matter were significantly correlated with mean equivalent diameter of macropores,soil bulk density was significantly correlated with macroporosity and mean equivalent diameter of macropores,and soil particles of 0.002–0.02 mm was correlated highly with soil macropore characteristics.
引文
[1]Beven K,Germann P.Macropores and water-flow in soils[J].Water Resources Research,1982,18(5):1311–1325
    [2]Lin H,Bouma J,Wilding L P,et al.Advances in hydropedology[J].Advances in Agronomy,2005,85:1–89
    [3]Xin H.A green fervor sweeps the qinghai-tibetan plateau[J].Science,2008,321(5889):633–635
    [4]Jarvis N J.A review of non-equilibrium water flow and solute transport in soil macropores:Principles,controlling factors and consequences for water quality[J].European Journal of Soil Science,2007,58(3):523–546
    [5]Anderson S H,Peyton R L,Gantzer C J.Evaluation of constructed and natural soil macropores using x-ray computed-tomography[J].Geoderma,1990,46(1/2/3):13–29
    [6]李德成,张桃林,B.Velde.CT分析技术在土壤科学研究中的应用[J].土壤,2002,34(6):328–332
    [7]何娟,刘建立,吕菲,等.基于CT数字图像的土壤孔隙分形特征研究[J].土壤,2008,40(4):662–666
    [8]周虎,李文昭,张中彬,等.利用X射线CT研究多尺度土壤结构[J].土壤学报,2013,50(6):159–163
    [9]Perret J,Prasher S O,Kantzas A,et al.A two-domain approach using cat scanning to model solute transport in soil[J].Journal of Environmental Quality,2000,29(3):995–1010
    [10]Ersahin S,Papendick R I,Smith J L,et al.Macropore transport of bromide as influenced by soil structure differences[J].Geoderma,2002,108(3/4):207–223
    [11]Vervoort R W,Radcliffe D E,West L T.Soil structure development and preferential solute flow[J].Water Resources Research,1999,35(4):913–928
    [12]Shaw J N,West L T,Radcliffe D E,et al.Preferential flow and pedotransfer functions for transport properties in sandy kandiudults[J].Soil Science Society of America Journal,2000,64(2):670–678
    [13]Clausnitzer V,Hopmans J W.Simultaneous modeling of transient 3-dimensional root-growth and soil-water flow[J].Plant and Soil,1994,164(2):299–314
    [14]Luo L F,Lin H,Li S C.Quantification of 3-d soil macropore networks in different soil types and land uses using computed tomography[J].Journal of Hydrology,2010,393(1/2):53–64
    [15]王恩姮,卢倩倩,陈祥伟.模拟冻融循环对黑土剖面大孔隙特征的影响[J].土壤学报,2014,51(3):490–496
    [16]曹军骥,安芷生.青海湖流域生态和环境治理技术集成与试验示范项目简介及主要进展[J].地球环境学报,2010,1(3):158–161
    [17]赵国琴,李小雁,吴华武,等.青海湖流域具鳞水柏枝植物水分利用氢同位素示踪研究[J].植物生态学报,2013(12):1091–1100
    [18]Zhang S Y,Li X Y,Li L,et al.The measurement and modelling of stemflow in an alpinemyricaria squamosacommunity[J].Hydrological Processes,2015,29(6):889–899
    [19]Zhang S Y,Li X Y,Ma Y J,et al.Interannual and seasonal variability in evapotranspiration and energy partitioning over the alpine riparian shrub Myricaria squamosa Desv.on qinghai–tibet plateau[J].Cold Regions Science and Technology,2014,102:8–20
    [20]吴华武,李小雁,蒋志云,等.基于δd、δ18o的青海湖流域芨芨草水分利用来源变化研究[J].生态学报,2015,35(24):8174–8183
    [21]赵景波,陈颖,曹军骥,等.青海湖西北部土壤入渗规律研究[J].陕西师范大学学报(自然科学版),2011(3):90–96
    [22]赵景波,曹军骥.青海湖流域土壤水与土壤水库研究[M].北京:科学出版社,2012:3
    [23]王予生.青海土壤[M].北京:中国农业出版社,1997:150
    [24]Aubertin G M.Nature and extent of macropores in forest soils and their influence on subsurface water movement[J].Upper Darby:[s.n.],1971:33
    [25]Mosley M P.Streamflow generation in a forested watershed,new-zealand[J].Water Resources Research,1979,15(4):795–806
    [26]李宗超,胡霞.小叶锦鸡儿灌丛化对退化沙质草地土壤孔隙特征的影响[J].土壤学报,2015,52(1):242–248
    [27]Bharati L,Lee K H,Isenhart T M,et al.Soil-water infiltration under crops,pasture,and established riparian buffer in midwestern USA[J].Agroforestry Systems,2002,56(3):249–257
    [28]Seobi T,Anderson S H,Udawatta R P,et al.Influence of grass and agroforestry buffer strips on soil hydraulic properties for an albaqualf[J].Soil Science Society of America Journal,2005,69(3):893–901
    [29]高宏光,杨双兰,曾群望.影响文山三七品质的土壤地质背景因素[J].云南地质,2001(2):195–202
    [30]杨俊东,陈兴福,杨文钰,等.川泽泻质量与其根际土壤理化性质的相关性分析[J].中草药,2012(3):581–587
    [31]杨成德,龙瑞军,陈秀蓉等.东祁连山高寒草甸土壤微生物量及其与土壤物理因子相关性特征[J].草业学报,2007(4):62–68
    [32]程亚南,刘建立,张佳宝.土壤孔隙结构定量化研究进展[J].土壤通报,2012(4):988–994
    [33]曹鹤,薛立,谢腾芳,等.华南地区八种人工林的土壤物理性质[J].生态学杂志,2009(4):620–625
    [34]冯杰,尚熳廷,刘佩贵.大孔隙土壤与均质土壤水分特征曲线比较研究[J].土壤通报,2009(5):1006–1009
    [35]杨永辉,武继承,毛永萍,等.利用计算机断层扫描技术研究土壤改良措施下土壤孔隙[J].农业工程学报,2013(23):99–108
    [36]路远,张万祥,孙榕江,等.天祝高寒草甸土壤容重与孔隙度时空变化研究[J].草原与草坪,2009(3):48–51
    [37]曹广民,张金霞,鲍新奎,等.高寒草甸生态系统磷素循环[J].生态学报,1999,19(4):514–518
    [38]胡霞,李宗超,刘勇,等.基于CT扫描研究青海湖流域高寒草甸不同坡位土壤大孔隙结构特征[J].土壤,2016,48(1):180–185
    [39]张法伟,李英年,汪诗平,等.青藏高原高寒草甸土壤有机质、全氮和全磷含量对不同土地利用格局的响应[J].中国农业气象,2009(3):323–326
    [40]Bronick C J,Lal R.Soil structure and management:A review[J].Geoderma,2005,124(1/2):3–22
    [41]邹焱,苏以荣,路鹏,等.洞庭湖区不同耕种方式下水稻土壤有机碳、全氮和全磷含量状况[J].土壤通报,2006(4):671–674

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700