转AtTGA4小麦田间耐低磷胁迫的功能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Functional Analysis of AtTGA4 Transgenic Wheat Tolerance to Low Phosphorus Stress in Field
  • 作者:凌炳琦 ; 柏星轩 ; 周永斌 ; 王春霄 ; 徐兆师 ; 马有志 ; 陈明 ; 张小红
  • 英文作者:LING BingQi;BAI XingXuan;ZHOU YongBin;WANG ChunXiao;XU ZhaoShi;MA YouZhi;CHEN Ming;ZHANG XiaoHong;College of Life Sciences, Northwest A & F University;Institute of Crop Sciences, Chinese Academy of Agricultural Sciences;
  • 关键词:转基因小麦 ; AtTGA4 ; 低磷营养胁迫 ; 产量 ; 生理指标
  • 英文关键词:transgenic wheat;;AtTGA4;;low phosphorus stress;;yield;;physiological index
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:西北农林科技大学生命科学学院;中国农业科学院作物科学研究所;
  • 出版日期:2018-06-20 09:22
  • 出版单位:中国农业科学
  • 年:2018
  • 期:v.51
  • 基金:转基因生物重大专项(2016ZX08002-005)
  • 语种:中文;
  • 页:ZNYK201812001
  • 页数:10
  • CN:12
  • ISSN:11-1328/S
  • 分类号:6-15
摘要
【目的】将bZIP类转录因子基因AtTGA4转化小麦创制耐低磷转基因小麦新材料,同时分析AtTGA4提高小麦抗逆性的生理机制,为小麦耐低磷胁迫分子育种奠定基础。【方法】采用最小表达框基因枪转化法将AtTGA4和筛选标记基因Bar共转化受体小麦石4056,通过PCR检测筛选出无Bar并能稳定遗传AtTGA4的转基因小麦新株系。基于试验地土壤养分含量状况施用不同水平的磷肥,形成一定程度的正常和低磷营养胁迫,对AtTGA4转基因小麦新株系进行低磷胁迫耐受性试验。在开花期进行了光系统Ⅱ原初光能转化效率(light efficiency of the light systemⅡ,Fv/Fm),叶绿素相对含量(soil and plant analyzer development readings,SPAD值)和气冠温差(canopy temperature depression,CTD)等生理指标的测定,在成熟期进行了株高、分蘖数、穗粒数等农艺性状的调查,并在小麦收获后进行了产量及不同组分(根、茎、叶、籽粒)磷浓度和磷吸收、残留总量的测定和统计。【结果】PCR分析结果证明,AtTGA4已在石4056小麦中稳定遗传至T4代,共获得4个稳定转基因株系。根据土壤养分含量测定结果,在正常条件地块施加812.39 kg·hm-2的过磷酸钙,低磷处理地块不施磷肥。产量及农艺性状统计结果显示,AtTGA4转基因株系L1和L2在正常和低磷胁迫条件下的产量相对于受体对照小麦显著增加,正常条件下产量增幅为5.3%—8.6%,低磷胁迫下产量增幅为4.4%—7.7%。在低磷胁迫条件下,过表达AtTGA4的转基因小麦种子千粒重显著比受体显著增加。开花期田间生理指标测定结果显示,转基因株系L1和L2在低磷条件下的Fv/Fm和CTD明显优于受体,而SPAD值没有明显差异。田间调查时发现,低磷条件下受体比转基因材料提早结束灌浆,表现在穗子提早变黄。成熟末期磷含量测定结果显示,转基因株系L1和L2在低磷条件下茎杆磷浓度比受体显著提高,在其他组织中则无显著差异。2个转基因株系在低磷条件下茎、叶和籽粒吸收、残留的总磷含量都要高于受体,地上部总磷含量增幅达6.38%—17.47%。转基因材料AtTGA4表达量分析结果显示,目标基因在株系L2中的表达量较株系L1中的低,是株系L1的0.69倍。【结论】在低磷胁迫条件下AtTGA4可以显著提高转基因小麦对磷元素的吸收及运输,提高转基因小麦的产量,进而提高转基因小麦对低磷胁迫的耐性。
        【Objective】 In previous work, we had proven that a b ZIP type transcription factor gene, AtTGA4 can improve the drought resistance and low nitrogen tolerance of transgenic Arabidopsis. In this study, AtTGA4 was transformed into wheat to identify the tolerance of transgenic wheats to low phosphorus stress in field. At the same time, the physiological mechanism of AtTGA4 gene to improve the stress resistance of transgenic wheats was analyzed, which laid the foundation for the molecular breeding of wheat tolerant to low phosphorus stress. 【Method】Used particle bombardment method of minimal expression box to co-transform AtTGA4 and marker gene Bar into wheat variety Shi4056. After transformation, we screened many transgenic wheat lines without Bar gene and with AtTGA4 gene through PCR assay. In field experiment, base on fertilizer nutrient content in soil we applied different levels of phosphate, which led to low phosphorus stress in soil. AtTGA4 transgenic wheat lines were tested under low phosphorus. During the flowering stage some physiological indexes were identified such as light efficiency of the light system Ⅱ(Fv/Fm), the relative content of chlorophyll(SPAD) and crown the temperature difference(CTD), and other agronomic traits were investigated, during mature stage such as plants height, tiller number, grains per spike in mature period, and some values such as the grain yield and phosphorus concentration and phosphorus uptake in different components in wheat(root, stem, leaf and grain) were measured and data statistic analysis were completed. 【Result】 PCR analysis showed that AtTGA4 gene had been stable heritability for T4 generation in Shi4056 and four stable transgenic lines were obtained. According to the results of soil nutrient content, 812.39 kg·hm-2 of superphosphate was applied to normal plots, and no phosphorus was applied in low phosphorus treatment plots. The statistical results of yield and agronomic characters showed that the grain yield of AtTGA4 transgenic lines L1 and L2 increased compared to wild type(WT) significantly under normal condition and low phosphorus stress. Under normal conditions the yield of transgenic wheat increase of 5.3%-8.6%, and under low phosphorus stress grain yield of transgenic wheat increased of 4.4%-7.7%. Thousand seed weight of AtTGA4 transgenic wheat increased significantly than WT. The results of physiological indexes assay in field showed that the Fv/Fm and CTD of transgenic lines L1 and L2 were significantly better than those of WT under the condition of low phosphorus, while SPAD had no significant difference. We found that under low phosphorus stress WT were in early grain filling than the transgenic wheat, and the ears turn yellow early in WT than that in transgenic wheat plants. The phosphorus content assay during the late mature stage showed that the phosphorus concentration in the stems of L1 and L2 of transgenic lines increased significantly compared with that of WT under the condition of low phosphorus, but there was no significant difference in other tissues. Under the condition of low phosphorus, the total phosphorus content in stems and leaves and grains of two transgenic lines was higher than that of WT, and the total phosphorus content in the aerial part increased by 6.38%-17.47%. q RT-PCR results of AtTGA4 in transgenic wheat showed that the expression of AtTGA4 in Line 2(L1) was 0.69 times lower than that of Line 1(L1). 【Conclusion】 The above results showed that under the condition of low phosphorus stress, AtTGA4 can improve the uptake and transportation of phosphorus in transgenic wheat plants, and increase the yield of transgenic plants, and further enhance the tolerance of transgenic wheat to low phosphorus stress.
引文
[1]CLARKSON D T,HANSON J B.The mineral nutrition of higher plants.Plant Physiology,1980,31:239-298.
    [2]SCHACHTMAN D P,REID R J,AYLING S M.Phosphorus uptake by plants:From soil to cell.Plant Physiology,1998,116:447-453.
    [3]郭再华,贺立源,徐才国.不同耐低磷水稻基因型秧苗对难溶性磷的吸收利用.作物学报,2005,31(10):1322-1327.GUO Z H,HE L Y,XU C G.Uptake and use of sparingly soluble phosphorus by rice genotypes with different P-efficiency.Acta Agronomica Sinica,2005,31(10):1322-1327.(in Chinese)
    [4]李玉京,李滨,李继云,李振声.植物有效利用土壤磷特性的遗传学研究进展.遗传,1998,20(3):38-41.LI Y J,LI B,LI J Y,LI Z S.Advances in genetic study on character of plant efficiently utilizing soil phosphorus.Hereditas,1998,20(3):38-41.(in Chinese)
    [5]廖红,严小龙.菜豆根构型对低磷胁迫和适应性变化及其基因型差异.植物学报,2000,42(2):158-163.LIAO H,YAN X L.Adaptive changes and genotypic variation for root architecture of common bean in response to phosphorus deficiency.Acta Botanica Sinica,2000,42(2):158-163.(in Chinese)
    [6]DAVIES T G E,YING J,XU Q,LI Z S,LI J,GORDON-WEEKS R.Expression analysis of putative high-affinaty phosphate transporters in Chinese winter wheat.Plant Cell and Environment,2002(25):1325-1340.
    [7]SU J Y,ZHENG Q,LI H W,LI B,JING R L,TONG Y P,LI Z S.Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions.Plant Science,2009(176):824-836.
    [8]WANG J,SUN J H,MIAO J,GUO J K,SHI Z L,HE M Q,CHEN Y,ZHAO X Q,LI B,HAN F P,TONG Y P,LI Z S.A phosphate starvation response regulator Ta-PHR1 is involved in phosphate signalling and increases grain yield in wheat.Annals of Botany,2013,111:1139-1153.
    [9]RUBIO V,LINHARES F,SOLANO R,MARTIN A C,IGLESIAS J,LEYVA A,PAZ-ARES J.A conserved MYB transcription fator involved in phophate starvation signaling both in vascular plants and in unicellular algae.Genes Development,2001,15:2122-2133.
    [10]DEVAIAH B N,KARTHIKEYAN A S,RAGHOTTHAMA K G.WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis.Plant Physiology,2007,143:1789-1801.
    [11]SANO T,NAGATA T.The possible involvement of a phosphateinduced transcription factor encoded by Phi-2 gene from tobacco in ABA signaling pathways.Plant Cell Physiology,2002,43:12-20.
    [12]YI K K,WU Z C,ZHOU J,DU L M,GUO L B,WU Y R,WU P.Os PTF1,a novel transcription factor involved in tolerance to phosphate starvation in rice.Plant Physiology,2005,138:2087-2096.
    [13]ZHANG J Y,ZHOU X,XU Y,YAO M L,XIE F B,GAI J Y,LI Y,YANG S P.Soybean SPX1 is an important component of the response to phosphate deficiency for phosphorus homeostasis.Plant Science,2016,248:82-91.
    [14]ZHONG L,CHEN D D,MIN D H,LI W W,XU Z S,ZHOU Y B,LIL C,CHEN M,MA Y Z.At TGA4,a b ZIP transcription factor,confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana.Biochemical and Biophysical Research Communications,2015,457:433-439.
    [15]王娟,孙爱平,王开营,沈永平,张延成,王锦贵.土壤样品采集的原则与方法.现代农业科技,2011,21:300-301.WANG J,SUN A P,WANG K Y,SHEN Y P,ZHANG Y C,WANG JG.Principles and methods to collect soil samples.Modern Agricultural Science and Technology,2011,21:300-301.(in Chinese)
    [16]郭胜利,党延辉,刘守赞,郝明德.磷素吸附特性演变及其与土壤磷素形态、土壤有机碳含量的关系.植物营养与肥料学报,2005,11(1):33-39.GUO S L,DANG Y H,LIU S Z,HAO M D.Changes in characterization of phosphorus sorption in relation to it’s forms and soil organic carbon.Plant Nutrition and Fertilizing Science,2005,11(1):33-39.(in Chinese)
    [17]宇万太,张璐,沈善敏,廉鸿志.辽西褐土施肥及养分循环再利用中长期试验Ⅲ.磷和氮在堆腐过程中的循环率及有机肥料中养分利用率.应用生态学报,2002,11(13):1407-1409.YU W T,ZHANG L,SHEN S M,LIAN H Z.A long-term field trial on fertilization and on use of recycled nutrients in farming systemsⅢ.Recycling rate of P and N through a composting cycle and recoveries of P and N in organic manure.Chinese Journal of Applied Ecology,2002,11(13):1407-1409.(in Chinese)
    [18]李科江,张素芳,贾文竹,宋平忠,刘树庆,霍习良,王玉朵.半干旱区长期施肥对作物产量和土壤肥力的影响.植物营养与肥料学报,1999,5(1):21-25.LI K J,ZHANG S F,JIA W Z,SONG P Z,LIU S Q,HUO X L,WANG Y D.Effect of long-term fertilization on crop yield and soil fertility in semi-arid area.Plant Nutrition and Fertilizing Science,1999,5(1):21-25.(in Chinese)
    [19]王旭刚,李建民,张春霞.氮磷配施对旱地小麦产量和吸肥特性的影响.西北农林科技大学学报(自然科学版),2007,35(2):138-142.WANG X G,LI J M,ZHANG C X.Effects of fertilizer N,P on wheat yield and nutrients uptake characters in dryland of Loess Plateau.Journal of Northwest A&F University(Natural Science Edition),2007,35(2):138-142.(in Chinese)
    [20]赵亚妮.不同氮磷和种植模式下小麦的生长动态、产量及养分效率研究[D].雅安:四川农业大学,2016.ZHAO Y N.Wheat growth dynamic,yield and nutrient use efficiency associated with N and P in different planting patterns[D].Yaan:Sichuan Agricultural University,2016.(in Chinese)
    [21]胡梦芸,李辉,庞建周,刘茜,张颖君,孙丽静.过量表达蔗糖转运蛋白基因增强转基因小麦的耐寒性.中国农业科学,2015,48(8):1473-1483.HU M Y,LI H,PANG J Z,LIU Q,ZHANG Y J,SUN L J.Overexpression of sucrose transporter(Ta SUT1A)improves drought tolerance in transgenic wheat.Scientia Agricultura Sinica,2015,48(8):1473-1483.(in Chinese)
    [22]VANCE C P,UHDE-STONE C,ALLEN D L.Phosphorus acquisition and use:Critical adaptation by plants for securing a nonrenewable resource.New Phytologist,2003,157:423-447.
    [23]柴彦君,熊又升,黄丽,袁家富,徐祥玉,刘晔.施氮对不同品种冬小麦氮素积累和转运的影响.西北植物学报,2010,10:2040-2046.CHAI Y J,XIONG Y S,HUANG L,YUAN J F,XU X Y,LIU Y.Effects of nitrogen application on nitrogen accumulation,distribution and translocation of different winter wheat varieties.Acta Botanica Boreali-Occidentalia Sinica,2010,10:2040-2046.(in Chinese)
    [24]JAKOBY M.b ZIP transcription factors in Arabidopsis.Trends in Plant Science,2002,7(3):106-111.
    [25]田义,张彩霞,康国栋,李武兴,张利益,丛佩华.植物TGA转录因子研究进展.中国农业科学,2016,49(4):632-642.TIAN Y,ZHANG C X,KANG G D,LI W X,ZHANG L Y,CONG PH.Progress on TGA transcription factors in plant.Scientia Agricultura Sinica,2016,49(4):632-642.(in Chinese)
    [26]KATAGIRI F,LAM E,CHUA N H.Two tobacco DNA-bind proteins with homology to the nuclear factor CREB.Nature,1989,340:723-730.
    [27]喻修道,徐兆师,陈明,李连成,马有志.小麦转基因技术研究及其应用.中国农业科学,2010,43(8):1539-1553.YU X D,XU Z S,CHEN M,LI L C,MA Y Z.The progress and application of wheat transformation technology.Scientia Agricultura Sinica,2010,43(8):1539-1553.(in Chinese)
    [28]MULLER R,MORANT M,JARMER H,NILSSON L,NIELSEN TH.Genome-wide analysis of the Arabidopsis leaf transcription reveals interaction of phosphate and sugar metabolism.Plant Physiology,2007,143:156-171.
    [29]NILSSON L,MULLER R,NIELSEN T H.Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation.Physiologia Plantarum,2010,139:129-143.
    [30]BRANT A N,CHEN Y H Y.Patterns and mechanisms of nutrient resorption in plants.Critical Reviews in Plant Sciences,2015,34(5):471-486.
    [31]FRESCHET G T,CORNELISSEN J H C,VAN LOGTESTIJN R S P,AERTS R.Substantial nutrient resorption from leaves,stems and roots in a subarctic flora:What is the link with other resource economics traits?New Phytologist,2010,186(4):879-889.
    [32]AERTS R.Nutrient resorption from senescing leaves of perennials:Are there general patterns?The Journal of Ecology,1996,84(4):597-608.
    [33]MAO R,SONG C C,ZHANG X H,WANG X W,ZHANG Z H.Response of leaf,sheath and stem nutrient resorption to 7 years of Naddition in freshwater wetland of northeast China.Plant and Soil,2013,364(1):385-394.
    [34]NILSSON L,MULLER R,NIELSEN T H.Increased expression of the MYB-related transcription factor,PHR1,leads to enhanced phosphate uptake in Arabidopsis thaliana.Plant,Cell and Environment,2007,30:1499-1512.
    [35]ZHOU J,JIAO F C,WU Z C,LI Y Y,WANG X M,HE X W,ZHONG W Q,WU P.Os PHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants.Plant Physiology,2008,146:1673-1686.
    [36]JACOB J,LAWLOR D W.In vivo photosynthetic electron transport does not limit photosynthetic capacity in phosphate-deficient sunflower and maize leaves.Plant,Cell and Environment,1993,16:785-795.
    [37]许大全.光合速率、光合效率与作物产量.生物学通报,1999,34(8):8-10.XU D Q.Photosynthetic rate,photosynthetic efficiency and crop yield.Bulletin of Biology,1999,34(8):8-10.(in Chinese)
    [38]王菲,曹翠玲.磷水平对不同磷效率小麦叶绿素荧光参数的影响.植物营养与肥料学报,2010,16(3):758-762.WANG F,CAO C L.Effects of phosphorus levels on chlorophyll fluorescence parameters of wheat(Triticum aestivum L.)with different phosphorus efficiencies.Plant Nutrition and Fertilizer Science,2010,16(3):758-762.(in Chinese)
    [39]黄晓林,李妍,李国强.冠层温度与作物水分状况关系研究进展.安徽农业科学,2009,4:1511-1515.HUANG X L,LI Y,LI G Q.Research advance in relationship between canopy temperature and crop water status.Journal of Anhui Agricultural Sciences,2009,4:1511-1515.(in Chinese)
    [40]梁鸡保,张元香,王涛.提高作物水分利用的研究.北京农业,2012,27:149.LIANG J B,ZHANG Y X,WANG T.Study on improving water used of crop.Beijing Agriculture,2012,27:149.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700