典型绿洲不同土壤类型有机碳含量及其稳定碳同位素分布特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial Variation of Soil Organic Carbon and Stable Isotopes in Different Soil Types of a Typical Oasis
  • 作者:陈新 ; 贡璐 ; 李杨梅 ; 安申群 ; 赵晶晶
  • 英文作者:CHEN Xin;GONG Lu;LI Yang-mei;AN Shen-qun;ZHAO Jing-jing;College of Resources and Environment Science,Xinjiang University;Key Laboratory of Oasis Ecology,Ministry of Education;
  • 关键词:土壤有机碳 ; 稳定碳同位素 ; 剖面分布 ; 阿拉尔绿洲 ; 冗余分析
  • 英文关键词:soil organic carbon(SOC);;stable carbon isotope;;profile distribution;;Alar oasis;;redundancy analysis(RDA)
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:新疆大学资源与环境科学学院;绿洲生态教育部重点实验室;
  • 出版日期:2018-04-24 13:38
  • 出版单位:环境科学
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金项目(41461105);; 新疆维吾尔自治区教育厅研究生科研创新项目(XJGRI2017012)
  • 语种:中文;
  • 页:HJKZ201810041
  • 页数:9
  • CN:10
  • ISSN:11-1895/X
  • 分类号:345-353
摘要
土壤有机碳及其稳定同位素组成反映了生态系统碳循环的关键信息,对研究全球变化下陆地生态系统碳动态及碳资源的可持续发展具有重要意义.本研究以阿拉尔绿洲4种土壤类型为研究对象,测定不同深度土壤有机碳(SOC)含量和δ~(13)C值,探讨不同土壤类型有机碳分布、δ~(13)C_(SOC)丰度差异及其与土壤环境因子的关系.结果表明:(1)土壤整体有机碳含量由高到低依次为灌漠土、棕漠土、盐土、风沙土,且在表层(0~20 cm层)具有较大值;δ~(13)C_(SOC)变化范围在-26‰~-23‰,表层(0~20 cm)由正趋负为盐土>风沙土>灌漠土>棕漠土.(2)土壤有机碳含量受土壤类型、深度及其交互作用极显著影响,δ~(13)C_(SOC)受土壤类型、交互作用显著影响;进一步交互效应检验中土壤有机碳受因素水平影响极强,同位素相对较弱.(3)冗余分析发现土壤有机碳与土壤无机碳、全氮、土壤含水量、容重均存在显著或极显著正相关关系,与C/N具有显著负相关关系;δ13CSOC与电导率存在显著正相关关系,与土壤无机碳、土壤含水量均存在极显著负相关关系.土壤环境因子的重要性排序为土壤含水量>土壤无机碳>容重>全氮>C/N>电导率>pH.分析得出土壤有机碳及其同位素在不同土壤类型中呈现出不同变化规律,其土壤类型的效应强于土壤深度,受土壤含水量影响最甚.
        Soil organic carbon( SOC) and its stable isotope composition reflect important information on ecosystem carbon cycle.Under the background of global change,it is of great significance to study carbon dynamics and sustainable development of carbon resources in terrestrial ecosystems. In this study,four soil types in Alar oasis were studied to determine SOC content and δ~(13)C value at different layers,and the differences of δ~(13)C_(SOC) abundance and its relationship with soil environmental factors were also discussed. Three main outcomes were drawn from the results.(1)The total organic carbon( TOC) content of the soil was in the order of irrigated desert soil > brown desert soil > saline soil > aeolian sandy soil,and had a higher value in the surface layer( 0-20 cm layer); δ~(13)C_(SOC) ranged from-26‰--23‰,the surface layer( 0-20 cm) was in the order saline soil > aeolian sandy soil > irrigated desert soil > brown desert soi.(2) Both SOC and δ~(13)C_(SOC) were significantly affected by soil type and their interaction,and by soil depth. Furthermore,the effect test of interaction indicated that SOC was significantly impacted by environmental factors,but the impact on δ~(13)C_(SOC) was relatively weak.(3) The results of redundancy analysis showed that SOC had a significant or extremely significant positive correlation with soil inorganic carbon,total nitrogen,soil water content and bulk density,and had a significant negative correlation with C/N. There was also a significant positive correlation between δ~(13)C_(SOC) and conductivity,and in addition,δ~(13)C_(SOC) was negatively correlated with soil inorganic carbon and soil water content. The analyses showed that SOC and its isotopes changed with soil types,and that the effect of soil type was stronger than that of soil depth,which was mainly determined by soil moisture content.
引文
[1]Bhattacharya S S,Kim K H,Das S,et al.A review on the role of organic inputs in maintaining the soil carbon pool of the terrestrial ecosystem[J].Journal of Environmental Management,2016,167:214-227.
    [2]贡璐,朱美玲,刘曾媛,等.塔里木盆地南缘典型绿洲土壤有机碳、无机碳与环境因子的相关性[J].环境科学,2016,37(4):1516-1522.Gong L,Zhu M L,Liu Z Y,et al.Correlation among soil organic carbon,soil inorganic carbon and the environmental factors in a typical oasis in the southern edge of the tarim basin[J].Environmental Science,2016,37(4):1516-1522.
    [3]Law B E,Sun O J,Campbell J,et al.Changes in carbon storage and fluxes in a chronosequence of ponderosa pine[J].Global Change Biology,2003,9(4):510-524.
    [4]Guo Q J,Zhu G X,Chen T B,et al.Spatial variation and environmental assessment of soil organic carbon isotopes for tracing sources in a typical contaminated site[J].Journal of Geochemical Exploration,2017,175:11-17.
    [5]Nakane K.A simulation model of the seasonal variation of cycling of soil organic carbon in forest ecosystems[J].Japanese Journal of Ecology,1980,30:19-29.
    [6]Liu Y,Dang Z Q,Tian F P,et al.Soil organic carbon and inorganic carbon accumulation along a 30-year grassland restoration chronosequence in semi-arid regions(China)[J].Land Degradation&Development,2017,28(1):189-198.
    [7]Li Z W,Liu C,Dong Y T,et al.Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly-gully region of China[J].Soil and Tillage Research,2017,166:1-9.
    [8]Fissore C,Dalzell B J,Berhe A A,et al.Influence of topography on soil organic carbon dynamics in a Southern California grassland[J].Catena,2017,149:140-149.
    [9]Wang Z C,Liu S S,Huang C,et al.Impact of land use change on profile distributions of organic carbon fractions in peat and mineral soils in Northeast China[J].Catena,2017,152:1-8.
    [10]李艳,曹新星,王丽,等.辽西下白垩统义县组烃类化合物氢同位素组成及古气候环境意义[J].地学前缘,2017,24(5):416-426.Li Y,Cao X,Wang L,et al.The paleoclimate significance of hydrogen isotopic composition of individual hydrocarbon compounds in the Early Cretaceous Yixian Formation sediments from western Liaoning[J].Earth Science Frontiers,2017,24(5):416-426.
    [11]王毛兰,赖建平,胡珂图,等.鄱阳湖表层沉积物有机碳、氮同位素特征及其来源分析[J].中国环境科学,2014,34(4):1019-1025.Wang M L,Lai J P,Hu K T,et al.Compositions and sources of stable organic carbon and nitrogen isotopes in surface sediments of Poyang Lake[J].China Environmental Science,2014,34(4):1019-1025.
    [12]许文强,罗格平,陈曦,等.天山北坡土壤有机碳δ13C组成随海拔梯度的变化[J].同位素,2016,29(3):140-145.Wen-Qiang X U,Luo G P,Chen X,et al.Soil organicδ13C change along a vertical gradient in the northern slop of Tianshan Mountains[J].Journal of Isotopes,2016,29(3):140-145.
    [13]Blaser M,Conrad R.Stable carbon isotope fractionation as tracer of carbon cycling in anoxic soil ecosystems[J].Current Opinion in Biotechnology,2016,41:122-129.
    [14]Galdo I D,Six J,Peressotti A,et al.Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes[J].Global Change Biology,2003,9(8):1204-1213.
    [15]Rao Z G,Guo W K,Cao J T,et al.Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate:a global review[J].Earth-Science Reviews,2017,165:110-119.
    [16]Walker X J,Mack M C,Johnstone J F.Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests[J].Global Change Biology,2015,21(8):3102-3113.
    [17]琼雒,王玉刚,邓彩云,等.不同农业土地利用年限干旱区土壤剖面碳存储动态变化[J].农业工程学报,2017,33(19):287-294.Luo Q,Wang Y G,Deng C Y,et al.Dynamics of soil carbon storage under different land use years in arid agriculture[J].Transactions of the Chinese Society of Agricultural Engineering,2017,33(19):287-294.
    [18]王娜,许文强,徐华君,等.准噶尔盆地南缘荒漠区土壤碳分布及其稳定同位素变化[J].应用生态学报,2017,28(7):2215-2221.Wang N,Xu W Q,Xu H J,et al.Spatial variation of soil carbon and stable isotopes in the southern margin desert of Junggar Basin,China[J].Chinese Journal of Applied Ecology,2017,28(7):2215-2221.
    [19]Wang Y L,Zhao C Y,Ma Q L,et al.Carbon benefits of wolfberry plantation on secondary saline land in Jingtai oasis,Gansu—a case study on application of the CBP model[J].Journal of Environmental Management,2015,157:303-310.
    [20]龚子同.中国土壤系统分类[M].北京:科学出版社,1999.
    [21]吕贻忠,李保国.土壤学实验[M].北京:中国农业出版社,2010.
    [22]Breecker D O,Bergel S,Nadel M,et al.Minor stable carbon isotope fractionation between respired carbon dioxide and bulk soil organic matter during laboratory incubation of topsoil[J].Biogeochemistry,2015,123(1-2):83-98.
    [23]兰志龙,赵英,张建国,等.陕北黄土丘陵区不同土地利用方式下土壤碳剖面分布特征[J].环境科学,2018,39(1):339-347.Lan Z L,Zhao Y,Zhang J G,et al.Profile distribution of soil organic and inorganic carbon under different land use types in the Loess Plateau of Northern Shaanxi[J].Environmental Science,2018,39(1):339-347.
    [24]张婷,王旭东,逄萌雯,等.生物质炭和秸秆配合施用对土壤有机碳转化的影响[J].环境科学,2016,37(6):2298-2303.Zhang T,Wang X D,Pang M W,et al.Impacts of biochar and straw application on soil organic carbon transformation[J].Environmental Science,2016,37(6):2298-2303.
    [25]陈威,胡学玉,陆海楠.生物炭输入对土壤本体有机碳矿化的影响[J].环境科学,2015,36(6):2300-2305.Chen W,Hu X Y,Lu H N.Impacts of biochar input on mineralization of native soil organic carbon[J].Environmental Science,2015,36(6):2300-2305.
    [26]黎英华,姚云峰,秦富仓,等.不同类型土壤的有机碳密度特征[J].干旱区研究,2016,33(3):455-460.Li Y H,Yao Y F,Qin F C,et al.Distribution of different types of soil organic carbon density[J].Arid Zone Research,2016,33(3):455-460.
    [27]鲁晶晶.绿洲化过程中塔北灌区农田土壤固碳速率及潜力研究[D].北京:中国科学院大学,2016.
    [28]张珂,苏永中,王婷,等.荒漠绿洲区不同种植年限人工梭梭林土壤化学计量特征[J].生态学报,2016,36(11):3235-3243.Zhang K,Su Y Z,Wang T,et al.Soil stoichiometry characteristics of Haloxylon ammodendron with different plantation age in the desert-oasis ecotone,north China[J].Acta Ecologica Sinica,2016,36(11):3235-3243.
    [29]Hassan A,Ijaz S S,Lal R,et al.Depth distribution of soil organic carbon fractions in relation to tillage and cropping sequences in some dry lands of Punjab,Pakistan[J].Land Degradation&Development,2016,27(4):1175-1185.
    [30]Wang C,Wei H W,Liu D W,et al.Depth profiles of soil carbon isotopes along a semi-arid grassland transect in northern China[J].Plant and Soil,2017,417(1-2):43-52.
    [31]Balesdent J,Basile-Doelsch I,Chadoeuf J,et al.Turnover of deep organic carbon in cultivated soils:an estimate from a review of isotope data[J].Biotechnology,Agronomy,&Society and Environment,2017,21(3):181-190.
    [32]赵丹.新疆18种典型灌木及立地土壤有机稳定碳同位素组成特征[D].乌鲁木齐:新疆农业大学,2016.
    [33]de Rouw A,Soulileuth B,Huon S.Stable carbon isotope ratios in soil and vegetation shift with cultivation practices(Northern Laos)[J].Agriculture,Ecosystems&Environment,2015,200:161-168.
    [34]司高月,李晓玉,程淑兰,等.长白山垂直带森林叶片-凋落物-土壤连续体有机碳动态——基于稳定性碳同位素分析[J].生态学报,2017,37(16):5285-5293.Si G Y,Li X Y,Cheng S L,et al.Organic carbon dynamics of the leaf-litter-soil continuum in the typical forests of the Changbai Mountain transect:an analysis of stable carbon isotope technology[J].Acta Ecologica Sinica,2017,37(16):5285-5293.
    [35]高杰,李锐,李今今,等.白云岩风化剖面的粒度分布、元素迁移及碳同位素特征——以黔北新蒲剖面为例[J].生态学报,2016,36(5):1409-1420.Gao J,Li R,Li J J,et al.Grain size distribution,element migration,and stable carbon isotope characteristics of dolomite weathering profiles in Xinpu,North of Guizhou Province[J].Acta Ecologica Sinica,2016,36(5):1409-1420.
    [36]熊鑫,张慧玲,吴建平,等.鼎湖山森林演替序列植物-土壤碳氮同位素特征[J].植物生态学报,2016,40(6):533-542.Xiong X,Zhang H L,Wu J P,et al.13C and15N isotopic signatures of plant-soil continuum along a successional gradient in Dinghushan biosphere reserve[J].Chinese Journal of Plant Ecology,2016,40(6):533-542.
    [37]柯跃进,胡学玉,易卿,等.水稻秸秆生物炭对耕地土壤有机碳及其CO2释放的影响[J].环境科学,2014,35(1):93-99.Ke Y J,Hu X Y,Yi Q,et al.Impacts of rice straw biochar on organic carbon and CO2release in arable soil[J].Environmental Science,2014,35(1):93-99.
    [38]石小霞,赵诣,张琳,等.华北平原不同农田管理措施对于土壤碳库的影响[J].环境科学,2017,38(1):301-308.Shi X X,Zhao Y,Zhang L,et al.Effects of different agricultural practices on soil carbon pool in north China Plain[J].Environmental Science,2017,38(1):301-308.
    [39]Gon9alves D R P,de Moraes SáJ C,Mishra U,et al.Soil type and texture impacts on soil organic carbon storage in a subtropical agro-ecosystem[J].Geoderma,2017,286:88-97.
    [40]孟国欣,查同刚,张晓霞,等.植被类型和地形对黄土区退耕地土壤有机碳垂直分布的影响[J].生态学杂志,2017,36(9):2447-2454.Meng G X,Zha T G,Zhang X X,et al.Effects of vegetation type and terrain on vertical distribution of soil organic carbon on abandoned farmlands in the Loess Plateau[J].Chinese Journal of Ecology,2017,36(9):2447-2454.
    [41]柴彦君.灌漠土团聚体稳定性及其固碳机制研究[D].北京:中国农业科学院,2014.
    [42]Zhao B H,Li Z B,Li P,et al.Spatial distribution of soil organic carbon and its influencing factors under the condition of ecological construction in a hilly-gully watershed of the Loess Plateau,China[J].Geoderma,2017,296:10-17.
    [43]Torres-Sallan G,Creamer R E,Lanigan G J,et al.Effects of soil type and depth on carbon distribution within soil macroaggregates from temperate grassland systems[J].Geoderma,2018,313:56-56.
    [44]Atekwana E A,Molwalefhe L,Kgaodi O,et al.Effect of evapotranspiration on dissolved inorganic carbon and stable carbon isotopic evolution in rivers in semi-arid climates:the Okavango Delta in North West Botswana[J].Journal of Hydrology:Regional Studies,2016,7:1-13.
    [45]Manns H R,Parkin G W,Martin R C.Evidence of a union between organic carbon and water content in soil[J].Canadian Journal of Soil Science,2016,96(3):305-316.
    [46]Dou X L,He P,Cheng X L,et al.Long-term fertilization alters chemically-separated soil organic carbon pools:based on stable C isotope analyses[J].Scientific Reports,2016,6:19061.
    [47]贾俊仙,蔚耀洲,张健,等.土壤水分对半干旱区石灰性土壤有机碳矿化的影响[J].灌溉排水学报,2017,36(9):62-68.Jia J X,Yu Y Z,Zhang J,et al.Effect of soil moisture on mineralization of soil carbonin calcareous soils in the Semi-arid Regions of China[J].Journal of Irrigation and Drainage,2017,36(9):62-68.
    [48]韩东亮,朱新萍,胡毅,等.不同水分条件下巴音布鲁克天鹅湖高寒湿地土壤有机碳特征[J].湿地科学,2017,15(4):509-515.Han D L,Zhu X P,Hu Y,et al.Characteristics of soil organic carbon at Bayinbuluke swan lake alpine wetland under different water levels[J].Wetland Science,2017,15(4):509-515.
    [49]姜俊彦,黄星,李秀珍,等.潮滩湿地土壤有机碳储量及其与土壤理化因子的关系——以崇明东滩为例[J].生态与农村环境学报,2015,31(4):540-547.Jiang J Y,Huang X,Li X Z,et al.Soil organic carbon storage in tidal wetland and its relationships with soil physico-chemical factors:a case study of Dongtan of Chongming,Shanghai[J].Journal of Ecology and Rural Environment,2015,31(4):540-547.
    [50]赵丹,程军回,刘耘华,等.荒漠植物梭梭稳定碳同位素组成与环境因子的关系[J].生态学报,2017,37(8):2743-2752.Zhao D,Cheng J H,Liu Y H,et al.Relationship of stable carbon isotope composition with environmental factors in the desert plant,Haloxylon ammodendron[J].Acta Ecologica Sinica,2017,37(8):2743-2752.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700