基于标准电容器的工频、冲击两用型分压器的研制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development of Power-frequency and Impulse-voltage Voltage Divider Based on Standard Capacitor
  • 作者:龙兆芝 ; 李文婷 ; 刘少波 ; 鲁非 ; 肖凯 ; 张弛
  • 英文作者:LONG Zhaozhi;LI Wenting;LIU Shaobo;LU Fei;XIAO kai;ZHANG Chi;Measurement Research Institute, China Electric Power Research Institute;Electric Power Research Institute, State Grid Hubei Hubei Electric Power Company;
  • 关键词:标准电容器 ; 屏蔽 ; 冲击电压 ; ANSOFT ; 动态特性 ; 电压系数
  • 英文关键词:standard capacitor;;shielding;;impulse voltage;;ANSOFT;;dynamic characteristics;;voltage coefficient
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:中国电力科学研究院有限公司计量研究所;国网湖北省电力有限公司电力科学研究院;
  • 出版日期:2018-07-03 14:16
  • 出版单位:高电压技术
  • 年:2018
  • 期:v.44;No.307
  • 基金:国家电网公司科技项目(JL71-15-043);; 国家自然科学基金(51607161)~~
  • 语种:中文;
  • 页:GDYJ201806015
  • 页数:8
  • CN:06
  • ISSN:42-1239/TM
  • 分类号:114-121
摘要
高压标准电容具有优良的线性度、温度系数以及不受外界环境影响等优点,也可测量冲击电压。为此介绍一种600 kV基于压缩SF6气体绝缘的正立式标准电容器的两用型分压器。使用有限元分析软件ANSOFT对高压套管进行仿真计算,对接地屏蔽及中间电位屏蔽的位置和尺寸进行优化设计。当中间电位屏蔽上的电压系数k=41.6%时,沿套管外壁电场强度2个峰值持平约0.5 kV/mm,套管利用率最佳。对于电极的设计,依据电场大小确定高压电极形状和尺寸,不断优化屏蔽电极的尺寸,尽可能均匀低压电极表面的电场强度。为了改善分压器的动态性能,设计时低压电极与外壳外壁的距离仅25 mm。利用回归分析,工频电压下电容器的电压系数<5×10~(-5)。安装低压臂后,测量得到分压器的动态特性,上升时间41.6 ns。雷电全波下与标准冲击电阻分压器进行比对,2台分压器输出波形一致性非常好。
        The high voltage standard capacitor has many advantages such as desired linearity, small temperature coefficient and being unaffected by the external environment. We introduced a kind of 600 kV dual-purpose voltage divider based on upright-type compressed-gas high-voltage standard capacitor. The finite element analysis software of ANSOFT was used to simulate the high voltage bushing. The installation position and dimension of the grounding shield and the middle potential shield were optimized. It is found that the average of two peak values of electric field along the outer surface of busing both is 0.5 kV/mm and the bushing utilization is the best with the voltage coefficient k of 41.6%. For the design of the electrodes, the shape and size of the high voltage electrode are determined by the value of electric field. The size of the shielded electrode is continuously optimized to uniform the electric field intensity on the surface of the low voltage electrode. In order to improve the dynamic behavior of the divider, the distance between the low voltage electrode and the out wall of the metal tank is only 25 mm. By a regression analysis, the voltage coefficient of the capacitor under power frequency voltage is less than 5×10~(-5). With the installation of low voltage arm, the step response of the divider is measured, and the partial rise time is 41.6 ns. Comparison with standard impulse resistive divider, the output waves of two dividers are in good agreement under lighting impulse voltage.
引文
[1]龙兆芝,李文婷,刘少波,等.600 kV高压标准电容器的研制[J].电测与仪表,2017,54(14):105-111.LONG Zhaozhi,LI Wenting,LIU Shaobo,et al.Development of a 600kV high-voltage standard capacitor[J].Electrical Measurement&Instrumentation,2017,54(14):105-111.
    [2]龙兆芝,刘少波,李文婷,等.冲击电压分压器线性度实验研究[J].高电压技术,2012,38(8):2015-2022.LONG Zhaozhi,LIU Shaobo,LI Wenting,et al.Experimental research on linearity of impulse voltage divider[J].High Voltage Engineering,2012,38(8):2015-2022.
    [3]龙兆芝,章述汉,刘少波,等.特高压冲击电压测量系统线性度试验方法研究[J].高压电器,2012,48(9):56-62.LONG Zhaozhi,ZHANG Shuhan,LIU Shaobo,et al.Experimental methods research on linearity of UHV impulse voltage measuring systems[J].High Voltage Apparatus,2012,48(9):56-62.
    [4]文韬,张乔根,马径坦,等.冲击电压波形参数对SF6稍不均匀电场棒–板间隙放电电压的影响[J].高电压技术,2016,42(3):936-941.WEN Tao,ZHANG Qiaogen,MA Jingtan,et al.Influence of impulse waveform parameters on breakdown voltage in SF6 Quasi-uniform electric field of rod-plate gap[J].High Voltage Engineering,2016,42(3):936-941.
    [5]谢梁,叶奇明,罗晓庆,等.特高压交流串补装置相间操作冲击放电特性[J].高电压技术,2016,42(2):551-556.XIE Liang,YE Qiming,LUO Xiaoqing,et al.Phase-to-phase switching impulse discharge characteristics of UHVAC series compensation[J].High Voltage Engineering,2016,42(2):551-556.
    [6]李军浩,郭飞,张亮,等.变压器感应式振荡型操作冲击试验及局部放电测量技术[J].高电压技术,2016,42(4):1199-1206.LI Junhao,GUO Fei,ZHANG Liang,et al.Inductive oscillating switching impulse test and partial discharge detection technology for transformer[J].High Voltage Engineering,2016,42(4):1199-1206.
    [7]章欣,龙兆芝,宗贤伟,等.溯源用冲击电压标准波源[J].高电压技术,2015,41(8):2810-2817.ZHANG Xin,LONG Zhaozhi,ZONG Xianwei,et al.Impulse voltage calibrator used in traceability[J].High Voltage Engineering,2015,41(8):2810-2817.
    [8]刘少波,龙兆芝,鲁非,等,冲击电压标准波源的研制[J].高压电器,2015,52(1):140-145.LIU Shaobo,LONG Zhaozhi,LU Fei,et al.Study of impulse voltage calibrator[J].High Voltage Apparatus,2015,52(1):140-145.
    [9]GAO G G.The effect of the electric field of the grounded capacitor electrode on the capacitance of compressed-gas[C]∥Conference on Precision Electromagnetic Measurements.Ottawa,Canada:IEEE,1990:362.
    [10]RUNGIS J,BROWN D E.Experimental study of factors affecting capacitance of high-voltage compressed-gas capacitors[J].Science Measurement&Technology Iee Proceedings A,1981,128(4):273-277.
    [11]HILLHOUSE D L,PETERSON A E.A 300 kV compressed gas standard capacitor with negligible voltage dependence[J].IEEE Transactions on Instruments and Measurement,1973,22(4):408-416.
    [12]王勤,周峰,姜春阳,等.正立式压缩气体标准电容器的研制[J].高电压技术,2013,39(6):1509-1514.WANG Qin,ZHOU Feng,JIANG Chunyang,et al.Development of an upright-type compressed-gas standard capacitor[J].High Voltage Engineering,2013,39(6):1509-1514.
    [13]吴春风.1 200 kV特高压正立式标准电容器的研制[D].北京:华北电力大学,2009:5.WU Chunfeng.Development of a 1 200 kV UHV standard capacitor in upright-type[D],Beijing,China:North China Electric Power University,2009:5.
    [14]戚庆成,张子龙.利用高压标准电容器测量冲击电压[J].高电压技术,1985,11(2):1-5.QI Qingcheng,ZHANG Zilong.Measurement of impulse voltage using high voltage standard capacitor[J].High Voltage Engineering,1985,11(2):1-5.
    [15]黎斌.SF6高压电器设计[M].北京:机械工业出版社,2015.LI Bing.Design of SF6 high voltage electrical apparatus[M].Beijing,China:China Machine Press,2015:25-107.
    [16]郭天兴,吴俊莉,张建平.有限元法在标准电容器电场计算中的应用[J].电力电容器,2004(1):3-8.GUO Tianxing,WU Junli,ZHANG Jianping.The application of finite element methods to electric field calculation in the standard capacitor[J].Power Capacitor,2004(1):3-8.
    [17]郭天兴.1 000 kV标准电容器的电容稳定性能研究[J].电力电容器,2006(6):12-18.GUO Tianxing.Research on the capacitance stabilization of 1 000 kV standard capacitor[J].Power Capacitor,2006(6):12-18.
    [18]李世作.500 kV标准电容器电场优化研究[J],广西大学学报,2010,35(2):286-290.LI Shizuo.Optimization of electric field of the 500 kV standard capacitor[J].Journal of Guangxi University,2010,35(2):286-290.
    [19]李文婷,刘少波,龙兆芝,等.冲击测量软件的计算性能分析[J].电测与仪表,2015,51(9):64-69.LI Wenting,LIU Shaobo,LONG Zhaozhi,et al.Calculated performance analysis of impulse measurement software[J].Electrical Measurement&Instrumentation,2015,51(9):64-69.
    [20]龙兆芝,刘少波,李文婷,等.冲击电压测量软件的验证及其比对[J].高压电器,2014,50(6):91-97.LONG Zhaozhi,LIU Shaobo,LI Wenting et al.Verification and comparison of impulse voltage measuring software[J].High Voltage Apparatus,2014,50(6):91-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700