肝癌微波消融治疗的新进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The progress of microwave ablation therapy for primary liver cancer
  • 作者:王洋 ; 范承启 ; 邵成伟
  • 英文作者:WANG Yang;FAN Chengqi;SHAO Chengwei;Radiology Department of Changhai Hospital, Naval Military Medical University;
  • 关键词:微波消融 ; 原发性肝癌 ; 介入放射学
  • 英文关键词:Microwave ablation;;Primary liver cancer;;Interventional therapy
  • 中文刊名:XYXZ
  • 英文刊名:Journal of Medical Imaging
  • 机构:海军军医大学第一附属医院长海医院影像科;
  • 出版日期:2019-03-30
  • 出版单位:医学影像学杂志
  • 年:2019
  • 期:v.29
  • 语种:中文;
  • 页:XYXZ201903042
  • 页数:4
  • CN:03
  • ISSN:37-1426/R
  • 分类号:153-156
摘要
原发性肝癌是临床上最常见的恶性肿瘤之一,肿瘤消融术具有创伤小,成本低,可反复消融等优点,在肿瘤治疗领域得到较为广泛的应用。微波消融术是消融术的一种,它具有速度快、消融范围大、组织消融均匀、受血流影响较小等优势,在临床上应用越来越多。本文从消融技术、影像引导技术、联合治疗模式、疑难病例治疗及技术发展趋势等方面对肝癌微波治疗进行综述。
        Primary liver cancer is one of the most prevalent malignancies in the clinic. Tumor ablation has a wide range of applications in the field of tumor treatment due to its minimal invasiveness, low cost, and virtually unlimited repeatability. Microwave ablation has the advantages of fast, larger ablation areas, uniform ablation, and less influence of blood flow, which has been used more and more in the clinic. This article summarizes microwave ablation treatment for primary liver cancer from the aspects of ablation technology, image guidance technology, combination therapy, treatment of intractable case, and development trends.
引文
[1] 陈清,崔富强,樊静,等.中国肝癌一级预防专家共识(2018)[J]. 临床肝胆病杂志,2018, 34(10): 2090-2097.
    [2] 原发性肝癌诊疗规范(2017年版) [J]. 中国实用外科杂志, 2017, 27(7): 705-720.
    [3] Puljk R, Ruarus A, Scheffer H, et al. Percutaneous liver tumour ablation: image guidance, endpoint assessment, and quality control [J]. Can Assoc Radiol J, 2018, 69(1): 51-62.
    [4] Vogl T, Nour-Eldin N, Hammerstingl R, et al. Microwave ablation (MWA): basics, technique and results in primary and metastatic liver neoplasms-review article [J]. Rofo, 2017, 189(11): 1055-1066.
    [5] Asvadi N, Anvari A, Upoot R, et al. CT-buided percutaneous microwave ablation of tumors in the hepatic dome: assessment of efficacy and safety [J]. J Vasc Interv Radiol, 2016, 27(4): 496-502.
    [6] Hoffmann R, Rempp H, Keler D, et al. MR-guided microwave ablation in hepatic tumours: initial results in clinical routine [J]. Eur Radiol, 2017, 27(4): 1467-1476.
    [7] Zhu M, Sun Z, Ng C. Image-guided thermal ablation with MR-based thermometry [J]. Quant Imaging Med Surg, 2017, 7(3): 356-368.
    [8] Cornelis F, Sotirchos V, Violari E, et al. 18F-FDG PET/CT is an immediate imaging biomarker of treatment success after liver metastasis ablation [J]. J Nucl Med, 2016, 57(7): 1052-1057.
    [9] Baker EH, Thompson K, Mckillop IH, et al. Operative microwave ablation for hepatocellular carcinoma: a single center retrospective review of 219 patients [J]. J Gastrointest Oncol, 2017, 8(2): 337-346.
    [10] Takahashi H, Kahramangil B, Berber E. Local recurrence after microwave thermosphere ablation of malignant liver tumors: results of a surgical series [J]. Surgery, 2018, 163(4): 709-713.
    [11] Biederman D, Titiano J, Bishay V, et al. Radiation segmentectomy versus TACE combined with microwave ablation for unresectable solitary hepatocellular carcinoma up to 3 cm: a propensity score matching study [J]. Radiology, 2017, 283(3): 895-905.
    [12] Huang H, Liang P, Yu X, et al. Safety assessment and therapeutic efficacy of percutaneous microwave ablation therapy combined with percutaneous ethanol injection for hepatocellular carcinoma adjacent to the gallbladder [J]. Int J Hyperthermia, 2015, 31(1): 40-47.
    [13] Kong W, Cai H, Tang Y, et al. Microwave coagulation/ablation in combination with sorafenib suppresses the overgrowth of residual tumor in VX2 liver tumor model [J]. Discov Med, 2016, 21(118): 459-468.
    [14] Zhang L, Xia G, Liu Y, et al. Effect of a poloxamer 407-based thermosensitive gel on minimization of thermal injury to diaphragm during microwave ablation of the liver [J]. World J Gastroenterol, 2017, 23(12): 2141-2148.
    [15] Wang G, Sun Y, Cong L, et al. Artificial pleural effusion in percutaneous microwave ablation of hepatic tumors near the diaphragm under the guidance of ultrasound [J]. Int J Clin Exp Med, 2015, 8(9): 16765-16771.
    [16] Dou J, Yu J, Cheng Z, et al. Ultrasound-guided percutaneous microwave ablation for hepatocellular carcinoma in the caudate lobe [J]. Ultrasound Med Biol, 2016, 42(8): 1825-1833.
    [17] Beyer L, Pregler B, Niessen C, et al. Robot-assisted microwave thermoablation of liver tumors: a single-center experience [J]. Int J Comput Assist Radiol Surg, 2016, 11(2): 253-259.
    [18] Han L, Guo K, Gu F, et al. Effects of silibinin-loaded thermosensitive liposome-microbubble complex on inhibiting rabbit liver VX2 tumors in sub-hyperthermia fields [J]. Exp Ther Med, 2018, 15(2): 1233-1240.
    [19] Park WK, Maxwell AW, Frank VE, et al. Evaluation of a novel thermal accelerant for augmentation of microwave energy during image-guided tumor ablation [J]. Theranostics, 2017, 7(4): 1026-1035.
    [20] Zhou Q, Wu S, Gong N, et al. Liposomes loading sodium chloride as effective thermo-seeds for microwave ablation of hepatocellular carcinoma [J]. Nanoscale, 2017, 9(31): 11068-11076.
    [21] Park W, Maxwell A, Frank V, et al. The in vivo performance of a novel thermal accelerant agent used for augmentation of microwave energy delivery within biologic tissues during image-guided thermal ablation: a porcine study [J]. Int J Hyperthermia, 2018, 34(1): 11-18.
    [22] Tan L, Tang W, Liu T, et al. Biocompatible hollow polydopamine nanoparticles loaded Ionic liquid enhanced tumor microwave thermal ablation in vivo [J]. ACS Appl Mater Interfaces, 2016, 8(18): 11237-11245.
    [23] Long D, Mao J, Liu T, et al. Highly stable microwave susceptible agents via encapsulation of Ti-mineral superfine powders in urea-formaldehyde resin microcapsules for tumor hyperthermia therapy [J]. Nanoscale, 2016, 8(21): 11044-11051.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700