闽楠叶片响应干旱胁迫的蛋白质组分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Proteome Analysis of Phoebe bournei Leaves in Response to Drought Stress
  • 作者:卢思 ; 张哲 ; 刘丹 ; 曾钦朦 ; 陈伟 ; 陈世品
  • 英文作者:LU Si;ZHANG Zhe;LIU Dan;ZENG Qinmeng;CHEN Wei;CHEN Shipin;College of Forestry,Fujian Agriculture and Forestry University;College of Life Sciences,Fujian Agriculture and Forestry University;
  • 关键词:闽楠 ; 干旱胁迫 ; 双向电泳 ; 差异蛋白
  • 英文关键词:Phoebe bournei;;drought stress;;2-DE;;differential proteins
  • 中文刊名:DNYX
  • 英文刊名:Acta Botanica Boreali-Occidentalia Sinica
  • 机构:福建农林大学林学院;福建农林大学生命科学学院;
  • 出版日期:2019-02-15
  • 出版单位:西北植物学报
  • 年:2019
  • 期:v.39
  • 基金:福建省科学技术厅引导性项目(2016N0001);; 福建省林业厅林木种苗科技攻关五期项目(闽林[2016]9号);; 福建省财政厅项目(131912040)
  • 语种:中文;
  • 页:DNYX201902009
  • 页数:10
  • CN:02
  • ISSN:61-1091/Q
  • 分类号:73-82
摘要
闽楠对土壤水分要求较高,为了提高闽楠造林的成活率,该研究以正常供水为对照,测定了不同干旱胁迫时间(7d、14d)及复水后7d的叶片蛋白质组及生理生化指标变化,以探讨闽楠响应干旱胁迫的分子生理机制。结果表明:(1)不同干旱胁迫处理下闽楠叶片蛋白质双向电泳(2-DE)分析结果共发现51个差异表达蛋白;采用MALDI-TOF/TOF成功鉴定到45个蛋白点;这些鉴定出的差异蛋白与光合作用、碳水化合物和能量代谢、胁迫响应与防御、翻译后修饰、蛋白质转换与分子伴侣功能等生理代谢过程密切相关。(2)检测不同干旱处理时间闽楠叶片膜脂过氧化相关MDA含量,防御相关酶SOD、CAT、POD活性和糖代谢相关酶PFK、AGPase、PK及PDH活性,发现各指标在14d持续干旱胁迫时主要呈下降趋势,且变化均达到极显著水平(P<0.01)。研究认为,持续干旱胁迫下,光合作用和植物防御系统以及能量和糖代谢的降低是闽楠不耐干旱的重要生理生化原因,研究结果为今后耐旱闽楠的分子育种提供了理论依据。
        Phoebe bournei (Hemsl.)Yang requires higher soil moisture,in order to improve the survival rate of afforestation.The aim of this research was to investigate the drought tolerant of the P.bournei.The experiment was conducted to determine the changes of proteome,and physiological and biochemical indexes of P.bournei under different drought stress durations (7 d,14 ddrought treatments and 7 dafter rewatering restoration)to reveal the molecular mechanism.Results showed that:(1)fifty-one differentially expressed proteins were founded in the P.bournei leaves by using two-dimensional electrophoresis(2-DE)under different drought stresses.Forty-five differentially expressed proteins were successfully identified by MALDI-TOF/TOF.These identified differential proteins are closely related to some processes of physiological metabolism,including photosynthesis,carbohydrate and energy metabolism,stress response and defense,post-translational modifications,protein conversion and molecular chaperone functions.(2)At the same time,we found that the main trend of the content of MDA involved in membrane lipid peroxidation,the activities of SOD,CAT,POD associated with defense,and the activities of PFK,AGPase,PK and the content of PDH related to sugar metabolism were declined and significantly changed(P<0.01)in the leaves of P.bournei under 14 dcontinued drought stress.Reduced photosynthesis,plant defense systems,as well as energy and sugar metabolism under drought stress may be the physiological and biochemical reasons that the species was not a drought tolerant plant.The present study provided a theoretical basis for the molecular breeding of drought-tolerant P.bournei in the future.
引文
[1]郑万均.中国树木志[M].北京:中国林业出版社,1983:795-797.
    [2]陈存及,陈伙法.阔叶树种栽培[M].北京:中国林业出版社,2000:150-152.
    [3]吴大荣,王伯荪.濒危树种闽楠种子和幼苗生态学研究[J].生态学报,2001,21(11):1 751-1 760.WU D R,W ANG B S.Seed and seedling ecology of the endangered Phoebe bournei(Lau-raceae)[J].Acta Ecologica Sinica,2001,21(11):1 751-1 760.
    [4]葛永金,王军峰,方伟,等.闽楠地理分布格局及其气候特征研究[J].江西农业大学学报,2012,34(4):749-753.GE Y J,WANG J F,FANG W,et al.Distribution pattern of Phoebe bournei(Hemsl.)Yang and the characteristics of climate[J].Acta Agriculturae Universitatis Jiangxiensis,2012,34(4):749-753.
    [5]靳月,李铁华,文仕知,等.干旱胁迫对闽楠幼苗的生长和生理特性的影响[J].中南林业科技大学学报,2018,38(9):50-57.JIN Y,LI T H,WEN S Z,et al.Growth and physiological characteristics of Phoebe bournei seedling under drought stress[J].Journal of Central South University of Forestry&Technology,2018,38(9):50-57.
    [6]CHAVES MM,MAROCO JP,PEREIRA JS.Understanding plant responses to drought-from genes to the whole plant[J].Functional Plant Biology,2003,30(3):239-264.
    [7]周桂,李杨瑞.植物干旱诱导蛋白研究进展[J].广西农业科学,2007,38(4):379-385.ZHOU G,LI Y R.Advances in drought induced proteins in plants[J].Guangxi Agricultural Sciences,2007,38(4):379-385.
    [8]CRAMER GR,VAN S SC,HOPPER DW,et al.Proteomic analysis indicates massive changes in metabolism prior to the inhibition of growth and photosynthesis of grapevine(Vitis vinifera L.)in response to water deficit[J].BMC Plant Biology,2013,13(1):49.
    [9]VALDES AE,IRAR S,MAJADA JP,et al.Drought tolerance acquisition in Eucalyptus globulus(Labill.):a research on plant morphology,physiology and proteomics[J].J Proteomics,2013,79(4):263-276.
    [10]INGLE RA,SCHMIDT UG,FARRANT JM,et al.Mundree SG Proteomic analysis of leaf proteins during dehydration of the resurrection plant Xerophyta viscosa[J].Plant Cell Environ,2007,30(4):435-446.
    [11]JORRIN JV,RUBIALES D,DUMAS-GAUDOT E,et al.Proteomics:apromising approach to study biotic interaction in legumes.A review[J].Euphytica,2006,147(1-2):37-47.
    [12]RENNENBERG H,LORETO F,POLLE A,et al.Physiological responses offorest trees to heat and drought[J].Plant Biology,2006,8(5):556-571.
    [13]DURAND TC,SERGEANT K,RENAUT J,et al.Poplar under drought:comparison of leaf and cambial proteomic responses[J].Journal of Proteomics,2011,74(8):1 396-1 410.
    [14]刘丽杰,于景华,唐中华,等.非模式植物蛋白质组学研究进展[J].广西植物,2007,27(2):217-223.LIU L J,YU J H,TANG Z H,et al.Advances in non-model plant proteomics[J].Guihaia,2007,27(2):217-223.
    [15]马进,刘志高,郑钢.差异蛋白质组学及其在植物盐胁迫响应研究中的应用[J].浙江农林大学学报,2011,28(1):139-143.MA J,LIU Z G,ZHENG G.Differential proteomics and its application in plant salt stress[J].Journal of Zhejiang A&F University,2011,28(1):139-143.
    [16]刘计璇,胡冰,仉茜,等.干旱处理对华北绣线菊和毛果绣线菊光合作用及相关蛋白表达的影响[J].园艺学报,2015,42(5):917-929.LIU J X,HU B,ZHANG Q,et al.Effects of drought stress treatments on photosynthesis and proteins related to photosynthesis of Spiraea fritschiana and S.thichocarpa[J].Acta Horticulturae Sinica,2015,42(5):917-929.
    [17]Lincoln Taiz,Eduardo Zeiger[M].Plant Physiology,2015.
    [18]于勇,翁俊,徐春和.植物光系统Ⅱ放氧复合体外周蛋白结构和功能的研究进展[J].植物生理学报,2001,27(6):441-450.YU Y,WENG J,XU C H.Advances in studies on structure and function of periplasmic proteins in plant photosystem II[J].Acta Phytophysiologica Sinica,2001,27(6):441-450.
    [19]SUCHANDRADR,MUKESHS,PRASANNAS,et al.Generation of marker free salt tolerant transgenic plants of Arabidopsis thaliana using the gly I gene and cre gene under inducible promoters[J].Plant Cell Tiss Organ Cult,2008,95(1):1-11.
    [20]YADAV S K,SING L-P S L.Methylglyoxal evels in plants under salinity stress are dependent on glyoxalase I and glutathione[J].Biochem Biophys Res Commun,2005,337(1):61-67.
    [21]邓成菊,张建斌,贾彩红.香蕉乙二醛酶基因增强酿酒酵母对非生物胁迫抵抗能力的研究[J].中国生物工程杂志,2010,30(8):22-26.DENG C J,ZHANG J B,JIA C H.Banana Glyoxalase gene enhances the resistance of saccharomyces cerevisiae to abiotic stress[J].China Biotechnology,2010,30(8):22-26.
    [22]梁新华,史大刚.干旱胁迫对光果甘草幼苗根系MDA含量及保护酶POD、CAT活性的影响[J].干旱地区农业研究,2006,24(3):108-110.LIANG X H,SHI D G.Drought stress on MDA content in roots of Glycyrrhiza glabra L.seedlings and protective enzymes POD,CAT activity[J].Agricultural Research in the Arid Areas,2006,24(3):108-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700