用户名: 密码: 验证码:
耕作制度对胡麻土壤酶活性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of cropping system on flax soil enzyme activity
  • 作者:陈军 ; 王立光 ; 叶春雷 ; 李进京 ; 欧巧明 ; 罗俊杰
  • 英文作者:CHEN Jun;WANG Li-guang;YE Chun-lei;LI Jin-jing;OU Qiao-ming;LUO Jun-jie;Biotechnology Institute,Gansu Academy of Agricultural Sciences;
  • 关键词:耕作制度 ; 胡麻 ; 土壤酶活性 ; 土壤养分 ; 通径分析
  • 英文关键词:cropping system;;flax;;soil enzyme activity;;soil nutrient;;path analysis
  • 中文刊名:GHDQ
  • 英文刊名:Agricultural Research in the Arid Areas
  • 机构:甘肃省农业科学院生物技术研究所;
  • 出版日期:2019-05-10
  • 出版单位:干旱地区农业研究
  • 年:2019
  • 期:v.37;No.174
  • 基金:国家特色油料产业技术体系项目(CARS-14-2-23);; 国家自然科学基金地区基金项目(31660391,31460350);; 甘肃省农业科学院中青年基金(2016GAAS53);甘肃省农业科学院农业科技创新专项(2017GAAS35)
  • 语种:中文;
  • 页:GHDQ201903024
  • 页数:9
  • CN:03
  • ISSN:61-1088/S
  • 分类号:183-190+220
摘要
采用"轮作、休闲、连作、间作、休闲1年-种植"5种耕作模式,结合通径分析,研究不同耕作制度对胡麻土壤酶活性变化特征的影响,以及土壤养分对土壤酶的影响效应。结果表明:(1)胡麻枞形期,研究区表土层4种土壤酶活性各处理间无显著差异(P<0.05),说明不同耕作制度在胡麻生长前期对土壤酶影响不明显;盛花期,蔗糖酶活性T1、T2、T3和T4分别较T5提高44.6%、53.3%、61.9%和34.9%,脲酶活性T5、T1和T2分别较T4提高266.0%、157.0%和140.0%,碱性磷酸酶活性T3较T2提高54.0%;硕果期,过氧化氢酶活性T2和T3分别为1.41 mL·g~(-1)·h~(-1)和1.51 mL·g~(-4)·h~(-1),显著高于T1、T4和T5;(2)胡麻盛花期,亚土层土壤脲酶活性T2和T5分别为1.74 mg·g~(-1)·d~(-1)和1.70 mg·g~(-1)·d~(-1),显著高于T1、T3和T4;过氧化氢酶活性T1较T5提高212.0%,碱性磷酸酶活性T5较T4提高了21.6%;(3)蔗糖酶与碱性磷酸酶间显著负相关,与脲酶间正相关,其余酶为负相关;(4)耕层不同土壤酶活性受土壤养分因子影响的多重效应不同,pH、全磷含量能够促进蔗糖酶、过氧化氢酶活性提高,有机质、pH含量促进碱性磷酸酶活性提高;亚土层不同土壤酶活性受土壤因子影响的多重效应增加,主要为限制因子,且限制因子数要远大于表土层。
        With five different cropping systems: rotation, fallow, continuous cropping, intercropping, and fallow-cropping rotation, combined with path analysis,we studied the effect of soil nutrients on enzymes activities under different cropping systems in flax field. The results showed that:(1) In flax shapping period, there were no significant differences in soil enzyme activities in the topsoil of the study area(P<0.05), indicating that different cropping systems had no obvious effect on soil enzyme activities in the early stage of flax growth; At the flowering stage,invertase activity under T1, T2, T3 and T4 increased by 44.6%, 53.3%, 61.9% and 34.9%, respectively, compared with that under T5; urease activity under T5, T1, and T2 increased by 266.0%, 157.0% and 140.0%, respectively, compared with that under T4; alkaline phosphatase activity under T3 increased by 54.0% compared with that of T2; At the fruit stage, the catalase activities under T2 and T3 were 1.41 mL·g~(-1)·h~(-1) and 1.51 mL·g~(-1)·h~(-1), which were significantly higher than that of T1, T4, and T5.(2) In flax flowering period, urease activity of T2 and T5 were 1.74 mg·g~(-1)·d~(-1) and 1.70 mg·g~(-1)·d~(-1), respectively, which were significantly higher than that of T1, T3 and T4 in subsoil; catalase activity under T1 increased by 212.0% compared to T5; alkaline phosphatase activity of T5 increased by 21.6% compared with T4.(3) Invertase had a significant positive correlation with urease but negative correlation with alkaline phosphatase and the other enzymes.(4) In topsoil, different soil enzyme activities were affected by multiple effects of soil nutrient factors: pH and total phosphorus content promoted the activities of invertase and catalase while the organic matter and pH content promoted alkaline phosphatase activity; In subsoil, soil enzyme activities were affected by the multiple effects of soil factors, mainly limiting factors and the number of limiting factors was much greater than that in the topsoil.
引文
[1] 陈桂权,曾雄生.我国农业轮作休耕制度的建立[J].地方财政研究,2016,87(7):87-90.
    [2] 陈军,罗影,王立光,等.不同种植模式土壤水浸提液对胡麻的化感效应[J].中国土壤与肥料,2017,(3):125-130.
    [3] 叶协锋,杨超,李正,等.绿肥对植烟土壤酶活性及土壤肥力的影响[J].植物营养与肥料学报,2013,19(2):445-454.
    [4] 杜天庆,苗果园.豆科牧草根际土壤脲酶活性的研究[J].中国生态农业学报,2007,15(1):25-27.
    [5] 李正,刘国顺,敬海霞,等.翻压绿肥对植烟土壤微生物量及酶活性的影响[J].草业学报,2011,20(3):225-232.
    [6] 孙秀山,封海胜,万书波,等.连作花生田主要微生物类群与土壤酶活性变化及其交互作用[J].作物学报,2001,27(5):617-621.
    [7] 张英英,蔡立群,武均,等.不同耕作措施下陇中黄土高原旱作农田土壤活性有机碳组分及其与酶活性间的关系[J].干旱地区农业研究,2017,35(1):1-7.
    [8] 黄召存,陈娇,熊瑛,等.保护性耕作对蚕豆根际土壤微生物数量和酶活性的影响[J].干旱地区农业研究,2018,36(3):79-85.
    [9] 田永强,曹之富,张雪艳,等.不同农艺措施下温室土壤酶活性的动态变化及其相关性分析[J].植物营养与肥料学报,2009,15(4):857-864.
    [10] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:274-329.
    [11] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005:268-391.
    [12] 杨宁,邹冬生,杨满元,等.衡阳紫色土丘陵坡地不同植被恢复阶段土壤酶活性特征研究[J].植物营养与肥料学报,2013,19(6):1516-1524.
    [13] 王启兰,王溪,王长庭,等.高寒矮嵩草草甸土壤酶活性与土壤性质关系的研究[J].中国草地学报,2010,32(3):50-54.
    [14] 舒蛟靖,陈奇伯,王艳霞,等.华山松人工林土壤酶活性与理化因子的通径分析[J].东北林业大学学报,2014,42(9):125-128.
    [15] 宋九华,孟杰,曾羽,等.粗茎秦艽根茎品质与栽培土壤化学因子的相关性分析[J].植物资源与环境学报,2014,23(4):75-82.
    [16] 王灿,王德建,孙瑞娟,等.长期不同施肥方式下土壤酶活性与肥力因素的相关性[J].生态环境,2008,17(2):688-692.
    [17] 李秀玲,吕光辉,何雪芬.连作年限对土壤理化性质及酶活性的影响[J].干旱区资源与环境,2012,26(9):93-98.
    [18] 王文锋,李春花,黄绍文,等.不同施肥模式对设施菜田土壤酶活性的影响[J].应用生态学报,2016,27(3):873-882.
    [19] 剡斌.胡麻轮作模式对农田土壤养分、生物特性及作物产量的影响[D].兰州:甘肃农业大学,2018.
    [20] Gurpreet S,Jalota S K,Yadvinder S.Manuring and residue management effects on physical properties of a soil under the rice-wheat system in Punjab,India[J].Soil and Tillage Research,2007,94(1):229-238.
    [21] 伏星舟.不同耕作方式对民勤夏玉米农田土壤呼吸及酶活性的影响[D].兰州:甘肃农业大学,2018.
    [22] 安韶山,黄懿梅,刘梦云.宁南山区土壤酶活性特征及其与肥力因子的关系[J].中国生态农业学报,2007,15(5):55-58.
    [23] 王俊华,尹睿,张华勇,等.长期定位施肥对农田土壤酶活性及其相关因素的影响[J].生态环境,2007,l6(1):191-196.
    [24] 冉启洋,吕光辉,魏雪峰,等.艾比湖自然保护区土壤酶活性及理化性质[J].干旱区研究,2014,31(4):715-722.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700