紫穗槐幼苗根系生理特性和解剖结构对PEG-6000模拟干旱的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of physiological characteristics and anatomical structure of roots in Amorpha fruticosa seedlings exposed to simulated drought with PEG-6000
  • 作者:王竞红 ; 张秀梅 ; 陈艾 ; 周蕴薇 ; 陈鹏 ; 江远芳
  • 英文作者:WANG Jinghong;ZHANG Xiumei;CHEN Ai;ZHOU Yunwei;CHEN Peng;JIANG Yuanfang;College of Landscape Architecture,Northeast Forestry University;
  • 关键词:紫穗槐 ; PEG-6000 ; 根系生理特性 ; 解剖结构
  • 英文关键词:Amorpha fruticosa;;PEG-6000;;physiological characteristics of roots;;anatomical structure
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:东北林业大学园林学院;
  • 出版日期:2018-01-23
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:中央高校基本科研业务费专项(2572014CA27)
  • 语种:中文;
  • 页:STXB201802016
  • 页数:7
  • CN:02
  • ISSN:11-2031/Q
  • 分类号:158-164
摘要
采用PEG-6000模拟干旱胁迫处理,测定了紫穗槐幼苗根系的可溶性糖、可溶性蛋白质、丙二醛、游离脯氨酸含量及SOD、POD酶活性变化以及解剖结构特征,旨在比较不同干旱程度对紫穗槐幼苗根系生理指标、内部解剖结构的影响,探索紫穗槐幼苗对水分胁迫的适应能力,揭示紫穗槐幼苗根系对土壤水分胁迫的响应和调控机制。结果表明:丙二醛含量变化显示当PEG-6000溶液浓度超过50g/L以后,紫穗槐幼苗根的膜系统开始受到损伤,并在PEG-6000溶液浓度达到250g/L受损程度显著增强,达到了对照的1.6倍,同时启动渗透调节作用(游离脯氨酸含量显著增加),达到了对照的3.8倍,在PEG-6000溶液浓度低于200g/L时,紫穗槐幼苗根系中至少没有启动以游离脯氨酸为主的渗透调节过程。可溶性糖和可溶性蛋白质含量及SOD、POD酶活性的变化印证了胞内发生的生理代谢变化,在PEG-6000溶液浓度为200g/L时,可溶性糖含量仅为0.121mg/g,达到最低点,随后上升,当PEG-6000溶液浓度进一步增加到250g/L时,紫穗槐幼苗根系中的可溶性糖含量则迅速回升到0.64mg/g,为对照组的63.37%。可溶性蛋白质含量在低浓度PEG-6000溶液(50g/L)处理下即有明显反应,下降到对照的61.5%,随后呈波动性变化。SOD和POD活性对PEG-6000模拟干旱胁迫的响应规律类似,均对PEG-6000模拟干旱胁迫处理迅速响应且活性增加。当PEG-6000溶液浓度达到50g/L至100g/L时,抗氧化酶的合成量最高,而后活性下降。60d的PEG-6000模拟干旱胁迫处理影响了紫穗槐幼苗根系的生长发育,随着PEG-6000溶液浓度增加,维管柱的直径变大,木质部厚度增大,导管直径变小、但导管密度增加,当PEG-6000溶液浓度达到250g/L时,导管密度比对照组增加了41.3%,木质部厚度比对照组增加了91.5%。以上结果表明,PEG-6000模拟干旱胁迫处理下,不同胁迫程度紫穗槐内部生理和根系解剖结构变化不同,通过改变自身生理代谢和根系内部解剖结构,以适应土壤水分胁迫的逆境条件,来满足自身生长和发育的需求平衡。
        In this study,we used the PEG-6000 to simulate drought stress,and determined the content of soluble sugars,soluble protein, MDA( Malondialdehyde), and free proline, and changes in enzyme activities of SOD( Superoxide dismutase) and POD( Peroxidase) in roots of Amorpha fruticosa seedlings and in their anatomical features. Our objectives were to examine the effects of different levels of drought on the physiological indices and internal anatomical structures of seedlings of Amorpha fruticosa. Furthermore,we explored the adaptability response and regulation mechanism to water stressof Amorpha fruticosa seedlings. The results indicated that MDA appeared when the concentration of PEG-6000 was more than 50 g/L,and the membrane system of Amorpha fruticosa seedling roots began to suffer damage. When the PEG-6000 concentration reached 250 g/L,the extent of damage was significantly enhanced,reaching 1.6 times that of the the control group,and at the beginning of osmotic adjustment( free proline content increased significantly),it reached 3.8 times that of the control group. When the concentration of PEG-6000 solution was less than 200 g/L,the osmotic adjustment process was not initiated in the roots of Amorpha fruticosa seedlings with free proline. The physiological metabolism of the cell was verified through changes in soluble sugar and soluble proteincontent,and SOD and POD activity. When the concentration of PEG-6000 was 200 g/L,the soluble sugar content was 0. 121 mg/g,reached its lowest point,and then increased. As the PEG-6000 solution concentration further increased to 250 g/L,the soluble sugar content in the roots of Amorpha fruticosa seedlings rapidly increased to 0.64 mg/g,which was 63.37% of that of the control group. Soluble protein content in the low concentration of PEG-6000 solution( 50 g/L) treatment decreased to 61. 5% of that of the control group,followed by fluctuating changes. SOD and POD activities were similar to PEG-6000 simulated drought stress,and rapidly responded to PEG-6000 simulated drought stress treatment. Simultaneously,the enzyme activity of POD and SOD were increased. When the concentration of PEG-6000 was 50 g/L to 100 g/L,the synthesis of antioxidant enzyme was the highest,and then it decreased. SOD amplitude activity differed by more than six fold. Changes in POD activity were relatively small,and the difference in amplitude was less than a multiple of one. The 60-、day PEG-6000 solution simulating the drought stress affected the growth and development of the root system of the Amorpha fruticosa seedlings. With the increasing concentration of PEG-6000,the diameter of the vascular bundles increased. At the same time,the diameter of the catheter decreased,but its density increased. When the concentration of PEG-6000 reached 250 g/L,the catheter density increased by 41. 3% compared with that of the control group,and xylem thickness increased by 91.5% compared with that of the control group.The results showed that under different levels of drought stress treatments,the internal physiology and root anatomical structures of Amorpha fruticosa varied. The stress conditions of water and self-、growth and development balance needs were satisfied by altering their physiological metabolism and the internal anatomical structure of the roots.
引文
[1]王印川.紫穗槐及其经济利用价值.山西水土保持科技,2003,(1):21-23.
    [2]陈利云,汪之波,张宗舟.加热处理对紫穗槐种子萌发、内生根瘤菌及植株生长的影响.江苏农业科学,2011,39(6):572-574.
    [3]徐同冰.紫穗槐种子萌发特性研究.现代农业科技,2011,(7):202-204.
    [4]穆永光.非盐碱生境的二种豆科灌木盐碱耐性研究[D].长春:东北师范大学,2007.
    [5]颜淑云,周志宇,邹丽娜,秦彧.干旱胁迫对紫穗槐幼苗生理生化特性的影响.干旱区研究,2011,28(1):139-145.
    [6]邹丽娜.盐分胁迫下紫穗槐生理生长特性及营养成分特征[D].兰州:兰州大学,2010.
    [7]赵建诚,秦柱南,孙超,刘洪林,曹帮华.紫穗槐种子萌发对盐旱逆境的生理响应.种子,2012,31(5):26-29.
    [8]米银法,周米生.外源钙对盐胁迫下紫穗槐种子萌发及叶绿素含量的影响.现代农业科技,2011,(10):184-184.
    [9]崔大练,马玉心,王俊.干旱胁迫下紫穗槐叶片解剖特征的变化.广西植物,2011,31(3):332-337.
    [10]李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000.
    [11]王学奎.植物生理生化实验原理和技术.北京:高等教育出版社,2006.
    [12]Green J J,Baddeley J A,Cortina J,Watson C A.Root development in the Mediterranean shrub Pistacia lentiscus as affected by nursery treatments.Journal of Arid Environments,2005,61(1):1-12.
    [13]Shalata A,Tal M.The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii.Physiologia Plantarum,1998,104(2):169-174.
    [14]李霞,阎秀峰,于涛.水分胁迫对黄檗幼苗保护酶活性及脂质过氧化作用的影响.应用生态学报,2005,16(12):2353-2356.
    [15]董慧,段小春,常智慧.外源水杨酸对多年生黑麦草耐盐性的影响.北京林业大学学报,2015,37(2):128-135.
    [16]吴敏,张文辉,周建云,马闯,韩文娟.干旱胁迫对栓皮栎幼苗细根的生长与生理生化指标的影响.生态学报,2014,34(15):4223-4233.
    [17]Delauney A J,Verma D P S.Proline biosynthesis and osmoregulation in plants.The Plant Journal,1993,4(2):215-223.
    [18]Verbruggen N,Hermans C.Proline accumulation in plants:a review.Amino Acids,2008,35(4):753-759.
    [19]Chaves M M,Pereira J S,Maroco J,Rodrigues M L,Ricardo C P P,Osório M L,Carvalho I,Faria T,Pinheiro C.How plants cope with water stress in the field.Photosynthesis and growth.Annals of Botany,2002,89(7):907-916.
    [20]潘昕,邱权,李吉跃,王军辉,何茜,苏艳,马建伟,杜坤.干旱胁迫对青藏高原6种植物生理指标的影响.生态学报,2014,34(13):3558-3567.
    [21]刘方春,邢尚军,马海林,杜振宇,马丙尧.干旱对侧柏容器苗和裸根苗生长、营养及生理特性的影响.北京林业大学学报,2014,36(5):68-73.
    [22]Mac Fall J S,Johnson G A,Kramer P J.Comparative water uptake by roots of different ages in seedlings of loblolly pine(Pinus taeda L.).New Phytologist,1991,119:551-560.
    [23]Nobel P S.Physicochemical and Environmental Plant Physiology.San Diego,USA:Academic Press.1991.
    [24]刘延吉,田晓艳,曹敏建.低钾胁迫对玉米苗期根系生长和钾吸收特性的影响.玉米科学,2007,15(2):107-110.
    [25]赵祥,董宽虎,张垚,朱慧森,杨武德,杨美红.达乌里胡枝子根解剖结构与其抗旱性的关系.草地学报,2011,19(1):13-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700