钙钛矿铁电体在超高压下的铁电重现
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ferroelectricity Reentrance of Perovskite Ferroelectric Under Ultra-high Pressure: an Overview
  • 作者:肖长江
  • 英文作者:XIAO Changjiang;Department of Material Science and Engineering,Henan University of Technology;
  • 关键词:钙钛矿铁电体 ; 超高压 ; 相变 ; 铁电重现 ; 复合铁电体 ; 弛豫铁电体
  • 英文关键词:perovskite-type ferroelectric materials;;ultra-high pressure;;phase transition;;reentrance of ferroelectricity;;composite ferroelectrics;;relaxor ferroelectrics
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:河南工业大学材料科学与工程学院;
  • 出版日期:2019-04-10
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:郑州市科技局自然科学项目(20150246)~~
  • 语种:中文;
  • 页:CLDB201907010
  • 页数:6
  • CN:07
  • ISSN:50-1078/TB
  • 分类号:88-93
摘要
铁电材料的晶体在一定的温度范围内具有自发极化,而且其自发极化方向可以因外电场方向的反向而反向,它具有铁电性、热释电性、压电性、介电性及以光电效应、声光效应、光折变效应和非线性光学效应等特性,在铁电存储器、红外探测器、空间光调制器、介电热辐射测量器及光学传感器等方面有重要应用。铁电材料及其应用研究已成为凝聚态物理和固体电子学领域最热门的研究课题之一。当前在压电、超导、磁电阻、催化、离子导体等多种功能材料中,具有钙钛矿结构的材料占重要比例,因此钙钛矿结构材料也是当前材料科学研究领域的热点之一。在铁电材料中,钙钛矿型铁电体材料是电子陶瓷中使用最广泛的材料。与温度一样,压力也是决定物质存在状态和导致材料的结构与性能变化的基本热力学要素之一。在压力的作用下,材料内部原子之间的相互作用非常复杂,并且表现出与常压下迥异的性质,因此常压下的理论不一定能解释高压下的现象。多年来,研究者们一直致力于探索高压下物质的行为并揭示其中的物理现象和规律。超高压对铁电材料的结构和性能的影响也是人们一直研究的热点。在超高压下对铁电材料进行X射线衍射、拉曼光谱、中子散射分析及第一性原理理论计算,结果表明,压力能使铁电材料的对称性升高,空间群自由度减少,结构变得更规则,从而引发自发极化减少,导致铁电性能降低,铁电材料的晶体结构由铁电相逐渐转变为顺电相,铁电材料最终变为顺电材料。近年来,对铁电材料在更高压力下的研究发现,在超高压下铁电材料出现一个有趣的现象。随着压力的增加,一些铁电材料的铁电性逐渐降低,但超过某个临界值后,铁电性能有很大的提高,铁电性重新出现。本文综述了钙钛矿铁电体BaTiO_3、PbTiO_3、KNbO_3、复合铁电体BiFeO_3-PbTiO_3、弛豫铁电体Pb(Zn_(1/3)Nb_(2/3)) O_3和Pb(Mg_(1/3)Nb_(2/3)) O_3、BaTiO_3/PbTiO_3超晶格在超高压下晶体结构随压力的变化和铁电重现现象,使研究者们对铁电材料的结构和性能随压力的变化有全面的理解,以期为铁电材料的铁电机理研究提供参考,为未来新的钙钛矿铁电体的研究和制备提供理论依据和新的途径。
        Ferroelectric materialis defined as a kind of material whose crystal show spontaneous polarization in a certain temperature range and its spontaneous polarization direction can be reversed by the direction reverse of an external electric field. Ferroelectric material features ferroelectric,pyroelectric,piezoelectric,dielectric,photoelectric,acoustooptic,photorefractive and nonlinear optical effects,which enable its important applications in ferroelectric memory,infrared detector,spatial light modulator,dielectric thermal radiation measuring device,optical sensor and so forth. Accordingly,Ferroelectric materials and their applications have become one of the popular research topics in condensed matter physics and solid-state electronics.It is universally known that perovskite structure materials account for a considerable proportion among piezoelectric,superconductivity,magnetoresistance,catalysis,ionic conductor and other functional materials. As a result,perovskite structure materials have aroused great research interests in the field of materials science. Concerning the ferroelectric materials,perovskite ferroelectric materials are also the most widely used in electronic ceramics.Similar to temperature,pressure is also one of the basic thermodynamic factors that determine the existence of a material and change the structure and properties of the material. When pressure is added to the materials,complex interaction between atoms in the material occurs,which presents quite different properties from the one under atmospheric pressure. In this case,the relative theory of materials obtained at atmospheric pressure may not be able to explain the phenomenon of materials under high pressure. People have long been trying to explore the behavior of matters under high pressure and reveal the physical phenomena and laws. Also,the effect of ultra-high pressure on the structure and properties of ferroelectric materials has always been the focus of research. The study of ferroelectric materials under high pressure by means of X-ray diffraction,Raman spectrum,neutron scattering and first-principle theoretical calculation show that pressure contribute to increase the symmetry of ferroelectric materials,reduce the degrees of freedom of space group,make the crystal structure become more regular,and decrease spontaneous polarization,resulting in the reduction of ferroelectric properties. In addition,the crystal structure of ferroelectric material transforms from ferroelectric phase to paraelectric one,and the ferroelectric material finally turns to paraelectric one.In recent years,a novel phenomenon appears in ferroelectric materials under ultra-high pressure has been found during the research on ferroelectric materials under a much higher pressure. To be specific,the ferroelectric properties gradually decrease with the increasing pressure,yet there will be a sharp rise in ferroelectric properties of ferroelectric materials when the pressure exceeds a certain critical value,and ferroelectric properties have reappeared. In this paper,the changes of the crystal structure and ferroelectricity reentrance of perovskite-type ferroelectrics( such as BaTiO_3,PbTiO_3,KNbO_3),composite ferroelectrics( BiFeO_3-PbTiO_3),relaxor ferroelectrics( Pb( Zn_(1/3) Nb_(2/3)) O_3) and Pb( Mg_(1/3)-Nb_(2/3)) O_3,BaTiO_3/PbTiO_3 superlattices,under ultra-high pressure are reviewed. It is expected to provide a reference for the study on ferroelectric mechanism of ferroelectric materials,and offer a comprehensive understanding of the changes in the structure and properties of ferroelectric materials as a function of pressure. The theoretical basis and new approaches will be provided for the preparation and research of new perovskitetype ferroelectrics in the future.
引文
1 Zhong W L. Ferroelectric physics,Science Press, 2018(in Chinese). 钟维烈. 铁电体物理学,科学出版社,2018.
    2 Ai S T, Wang C L, Zhong W L. Acta Physica Sinica, 2001, 50(5), 910 (in Chinese). 艾树涛, 王春雷, 钟维烈.物理学报, 2001, 50(5), 910.
    3 Ye H J,Wang D W,Jiang Z J.Acta Physica Sinica 2016, 65 (23), 237101 (in Chinese). 叶红军,王大威,姜志军. 物理学报, 2016, 65(23), 237101.
    4 Zhong W L, Wang Y X. Piezoelectrics & Acoustooptics, 2003, 25(1),46 (in Chinese). 钟维烈, 王渊旭.压电与声光,2003, 25(1),46.
    5 Zhao Z, Buscaglia V, Viviani M, et al. Physical Review B, 2004, 70, 024107.
    6 Deng X Y, Wang X H, Wen H, et al. Journal of the American Ceramic Society, 2006, 15, 45.
    7 Deng X Y, Wang X H, Wen H, et al. Applied Physics Letters, 2006, 88,252905.
    8 Wang X H, Deng X Y, Wen H, et al. Applied Physics Letters, 2006, 89,162902.
    9 Lin S, Lü T Q, Jin C Q, et al. Physical Review B, 2006, 74,134115
    10 Hou Z W, Kang A G, Ma WQ,et al. Chinese Physics B, 2014, 23(11),117701.
    11 Zhong W L,, AL S T, Jiang B. Journal of Inorganic Materials, 2002, 17(5), 1009 (in Chinese). 钟维烈, 艾树涛, 姜斌. 无机材料学报, 2002, 17(5), 1009.
    12 Zhang H T, Kang A G, Yang B G, et al. Journal of Synthetic Crystals, 2013, 42(9), 1848 (in Chinese). 张海涛,康爱国,杨北革,等.人工晶体学报,2013, 42(9), 1848.
    13 Zhang S, Chen L, Li H Y. Piezoelectrics & Acoustoo Ptics, 2014, 36(1), 107 (in Chinese). 张帅,陈雷,李海洋. 压电与声光,2014, 36(1), 107.
    14 Liu Y G, Kang A G, Zhang S F, et al.Acta Physica Sinica, 2015, 64(17), 177702 (in Chinese). 刘永广, 康爱国, 张少飞, 等.物理学报, 2015, 64(17), 177702.
    15 Samara G A, Sakudo T, Yoshitsu K. Physical Review Letters, 1975, 35, 1767.
    16 Gourdain D, Besson J M, et al. Physical Review B, 2002, 65, 054104.
    17 Pruzan Ph, Gourdain D, Chervin J C. Solid State Communications, 2002, 123, 21.
    18 Ishidate T, Abe S, Takahashi H. Physical Review Letters, 1997, 78(12), 2397.
    19 Sani A, Levy D. Journal of Physics: Condensed Matter, 2002, 14,10601.
    20 Kornev I A, Bellaiche L, Bouvier P. Physical Review Letters, 2005, 95, 196804.
    21 Bousquet E, Ghosez P. Physical Review B, 2006, 74, 180101(R).
    22 Seo Y S, Ahn J S.Physical Review B, 2013, 88, 014114.
    23 Kornev I A, Bellaiche L. Phase Transitions, 2007, 80, 385.
    24 Janolin P E, Bouvier P, Kreisel J, et al. Physical Review Letters, 2008, 101(23), 237601.
    25 Kobayashi Y, Endo S, Ashida T. Physical Review B, 2000, 61, 5819.
    26 Li S, Rajeev A,B¨orje J. Journal of Physics: Condensed Matter, 2002, 14, 10873.
    27 Basu A, Jana R, Ranja R. Physical Review B, 2016, 93, 214114.
    28 Duan Y F, Tang G. Physical Review B, 2012, 85, 054108.
    29 Janolin P E, Dkhil B, Bouvier P. Physical Review B, 2006, 73(9),094128.
    30 Kreisel J, Dkhil B, Bouvier P. Physical Review B, 2002, 65, 172101.
    31 Chaabane B, Kreisel J, Dkhil B. Physical Review Letters, 2003, 90,257601.
    32 Ahart M, Somayazulu M, Ye Z G. Physical Review B, 2009, 79,132103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700