抗震约束下大跨度空间钢结构设计中支吊架的合理选取
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Reasonable Selection of Support and Hanger in the Design of Long-span Spatial Steel Structures Under Seismic Constraints
  • 作者:刘影 ; 刘德贵
  • 英文作者:LIU Ying;LIU Degui;College of Physics and Engineering, Chengdu Normal University;Southwest University of Science and Technology;
  • 关键词:大跨度 ; 空间钢结构 ; 支吊架 ; 施工抗震 ; 内力值
  • 英文关键词:large span;;spacial steel structure;;support and hanger;;construction aseismic;;internal force value
  • 中文刊名:ZBDZ
  • 英文刊名:China Earthquake Engineering Journal
  • 机构:成都师范学院物理与工程技术学院;西南科技大学;
  • 出版日期:2019-06-15
  • 出版单位:地震工程学报
  • 年:2019
  • 期:v.41
  • 基金:四川省教育厅项目(15ZB0122)
  • 语种:中文;
  • 页:ZBDZ201903013
  • 页数:7
  • CN:03
  • ISSN:62-1208/P
  • 分类号:89-95
摘要
大跨度空间钢结构设计中,合理选取支吊架对建筑的抗震性有着重要的影响,当前设计过程中未考虑支吊架组合后的抗震性能。综合选取适用于大跨度空间钢结构的支吊架结构,使其具有更优的抗震性能。首先给出目前应用较多的三种结构,其次给出一定的抗震约束条件,如承载力、应力应变与拉伸变形等。在条件约束下,给出具有抗震能力的支吊架选取模型并给出具体计算示例,选取和组合具有一定抗震能力的大跨度空间钢结构支吊架。结果表明,相较于传统的随机支吊架选取方式,具有抗震能力的模型下支吊架核心钢结构抗震水平明显提升。
        In the design of long-span spatial steel structures, reasonable selection of the support and upper hanger combination has an important influence on the seismic resistance of the structure. However, such factors are not taken into account in present designs. The main purpose of this paper is to comprehensively select the suitable support and hanger structure for the long-span spatial steel structure, in the hope of better seismic performance. First, three kinds of widely-used contemporary structures were listed. Second, some seismic constraint conditions, such as bearing capacity, stress-strain, and tensile deformation, were presented. Considering seismic constraints, the selection model for the support and hanger with anti-seismic capacity were given along with a concrete calculation example. The support and hanger of long-span spatial steel structure was selected, with a certain seismic capacity considered. The experimental results of the long-span spatial steel structure showed that the seismic level of the core steel structure with the model was obviously improved compared with the traditional random hanger selection method.
引文
[1] 操礼林,庄庆文,郑可恪,等.人行荷载作用下大跨度梁加速度反应谱研究[J].科学技术与工程,2017,17(25):127-132.CAO Lilin,ZHUANG Qingwen,ZHENG Keke,et al.Acceleration Response Spectrum Research of Large Span Beam under Pedestrian Loads[J].Science Technology and Engineering,2017,17(25):127-132.
    [2] 崔路苗,郭志宇.地震区居民建筑钢结构极限承载力测试与分析[J].地震工程学报,2018,40(1):54-59.CUI Lumiao,GUO Zhiyu.Test and Analysis of the Ultimate Bearing Capacity of Residential Building Steel Structures in Seismic Areas[J].China Earthquake Engineering Journal,2018,40(1):54-59.
    [3] 杨大彬,云超光,吴金志,等.基于下部支承分离式设计的大跨度网壳结构抗震性能研究[J].振动与冲击,2018,37(3):237-242.YANG Dabin,YUN Chaoguang,WU Jinzhi,et al.Aseismic Performance of Large Span Latticed Domes with Separated Substructures[J].Journal of Vibration and Shock,2018,37(3):237-242.
    [4] LEE J,KIM J.Development of Box-shaped Steel Slit Dampers for Seismic Retrofit of Building Structures[J].Engineering Structures,2017,150:934-946.
    [5] 韩凌,蒋晓洪,周骁雄,等.大跨度空间钢结构楼面行走式塔式起重机施工技术[J].施工技术,2016,45(11):108-110.HAN Ling,JIANG Xiaohong,ZHOU Xiaoxiong,et al.Construction Technology of Walking-type Tower Crane for Long-span Spatial Steel Structure[J].Construction Technology,2016,45(11):108-110.
    [6] 高晓频,张方绮,安永尧.管道支吊架间距计算标准比较分析[J].热力发电,2016,45(12):119-123.GAO Xiaopin,ZHANG Fangqi,AN Yongyao.Comparative Analysis of Calculation Standards for Pipe Hanger Interval[J].Thermal Power Generation,2016,45(12):119-123.
    [7] 吕志军,侯瑞,宋一铭,等.不同荷载工况下高层薄壁钢结构的抗震性能研究[J].计算机集成制造系统,2017,23(9):1899-1906.Lü Zhijun,HOU Rui,SONG Yiming,et al.Seismic Behavior of High Thin-walled Steel Structure with Different Load Distribution[J].Computer Integrated Manufacturing Systems,2017,23(9):1899-1906.
    [8] 王晓明,于吉圣,张兆平,等.超高层建筑中大跨度空中平台整体提升施工技术研究[J].钢结构,2014,29(12):65-68.WANG Xiaoming,YU Jisheng,ZHANG Zhaoping,et al.Integral Lifting Construction Technology of Long-span Aerial Platforms in Super High Rise Building[J].Steel Construction,2014,29(12):65-68.
    [9] 张爱林,郭志鹏,刘学春,等.带Z字形悬臂梁段拼接的装配式钢框架节点抗震性能试验研究[J].工程力学,2017,34(8):31-41.ZHANG Ailin,GUO Zhipeng,LIU Xuechun,et al.Analysis of Seismic Behavior of Prefabricated Steel Frame Joints With Z-shaped Cantilever Beam Splicing[J].Engineering Mechanics,2017,34(8):31-41.
    [10] 谈磊,宁帅朋,韩丽婷.输电线路工程预应力灌注桩防蚀设计及施工工艺[J].电力工程技术,2017,36(6):63-67.TAN Lei,NING Shuaipeng,HAN Liting.Anti-corrosion Design and Construction Technology for Prestressed Cast-in-place Pile with Serious Corrosion in Transmission Line Towers[J].Jiangsu Electrical Engineering,2017,36(6):63-67.
    [11] 尹凌峰,王康,徐正林,等.钢货架结构纵向抗侧体系及抗震性能分析[J].物流技术,2015,34(8):163-166.YIN Lingfeng,WANG Kang,XU Zhenglin,et al.Analysis of Lateral Anti-Leaning System and Shake-Proof Performance of Steel Racking Systems[J].Logistics Technology,2015,34(8):163-166.
    [12] 张艳霞,宁广,张贺昕,等.再生仿古建砖夹心墙体抗震性能试验研究[J].工程抗震与加固改造,2016,38(5):85-91.ZHANG Yanxia,NING Guang,ZHANG Hexin,et al.Test Research on Seismic Behavior of Recycled Archaized Brick Cavity Wall[J].Earthquake Resistant Engineering and Retrofitting,2016,38(5):85-91.
    [13] 舒兴平,曹福亮,卢倍嵘,等.基于增量动力分析法的大跨度空间管桁架结构地震易损性分析[J].工业建筑,2016,46(3):108-112.SHU Xingping,CAO Fuliang,LU Beirong,et al.Seismic Fragility Analysis of Large-span Spatial Pipe-truss Based on Ida Method[J].Industrial Construction,2016,46(3):108-112.
    [14] 张忠良.一种考虑地震动不确定性的钢结构抗震设计方法研究[J].四川建筑科学研究,2017,43(1):108-112.ZHANG Zhongliang.A Seismic Design Method for Steel Structures in Consideration of Uncertainty of Ground Motion[J].Sichuan Building Science,2017,43(1):108-112.
    [15] 杨晓敏.钢结构建筑顶棚的抗震性测试分析研究[J].科技通报,2015,31(10):151-153.YANG Xiaomin.Analysis of Aseismatic Test of Steel Structure Building Roof[J].Bulletin of Science and Technology,2015,31(10):151-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700