基于二维光子晶体负折射的共聚焦系统
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Confocal System Based on the Negative Refraction of Two-Dimensional Photonic Crystals
  • 作者:牛金科 ; 梁斌明 ; 庄松林 ; 王国旭 ; 雷雨
  • 英文作者:Niu Jinke;Liang Binming;Zhuang Songlin;Wang Guoxu;Lei Yu;School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology;
  • 关键词:衍射 ; 光子晶体 ; 负折射 ; 共聚焦 ; 亚波长成像 ; 超分辨成像
  • 英文关键词:diffraction;;photonic crystals;;negative refraction;;confocal;;subwavelength imaging;;super-resolution imaging
  • 中文刊名:JGDJ
  • 英文刊名:Laser & Optoelectronics Progress
  • 机构:上海理工大学光电信息与计算机工程学院;
  • 出版日期:2018-08-09 17:36
  • 出版单位:激光与光电子学进展
  • 年:2019
  • 期:v.56;No.637
  • 基金:国家自然科学基金(61177043)
  • 语种:中文;
  • 页:JGDJ201902002
  • 页数:5
  • CN:02
  • ISSN:31-1690/TN
  • 分类号:27-31
摘要
基于二维光子晶体的负折射和亚波长成像特性,提出了一种可以实现超分辨成像的共聚焦系统,使用时域有限差分法(FDTD)仿真了共聚焦系统的聚焦和成像的过程。在焦点离光子晶体透镜下表面1.55μm处,横坐标X=4μm时,焦点半峰全宽(FWHM)为0.593λ,小于入射波长,此时反射光在右侧像点的FWHM达到0.496λ,实现了超分辨成像,并且随着焦点的右移,像点FWHM不断减小。同时,在针孔和焦点位置不变时共聚焦系统的轴向分辨率达到2.2λ。
        In this study,a confocal system is proposed for which super-resolution imaging can be achieved based on the negative refraction and subwavelength imaging characteristics of two-dimensional photonic crystals(PCs).Further,the focusing and imaging processes of a confocal system are simulated with the finite-difference timedomain method.When the distance from the focus to the lower surface of a PC becomes 1.55μm and when the transverse coordinate x=4,the full width at half maximum(FWHM)of the focus becomes 0.593λ,which is less than the incident wavelength;further,the FWHM of the reflected light in the right of the image point becomes0.496λ,which indicates that super-resolution imaging can be realized.The FWHM of the image point decreases continuously when the focus shifts to right;further,the axial resolution of the confocal system becomes 2.2λwhen the pinhole and focus are fixed.
引文
[1] Veselago V G.The electrodynamics of substanceswith simultaneously negative values ofεandμ[J].Soviet Physics Uspekhi,1968,10(4):509-514.
    [2] Pendry J B.Negative refraction makes a perfect lens[J].Physical Review Letters,2000,85(18):3966-3969.
    [3] Kang M,Chen J,Li S M,et al.Optical spin-dependent angular shift in structured metamaterials[J].Optics Letters,2011,36(19):3942-3944.
    [4] John S.Strong localization of photons in certaindisordered dielectric superlattices[J]. PhysicalReview Letters,1987,58(23):2486-2489.
    [5] Yablonovitch G,Sheng P,Yablonovitch E,et al.Inhibited spontaneous emission in solid-state physicsand electronics[J].Physical Review Letters,1987,58(20):2059-2061.
    [6] Su K, Wang Z M,Liu J J.Three waveguidesdirectional coupler based on two dimensional squarelattice photonic crystal[J].Acta optica Sinica,2016,36(3):0323002.苏康,王梓名,刘建军.二维正方晶格光子晶体三光波导方向耦合器[J].光学学报,2016,36(3):0323002.
    [7] Zhang X X,Chen H M.Design and performanceanalysis of photonic crystal polarizing beam splitter[J].Laser &Optoelectronics Progress,2017,54(1):011301.张信祥,陈鹤鸣.光子晶体偏振分束器的设计与性能分析[J].激光与光电子学进展,2017,54(1):011301.
    [8] Ma J,Yu H H,Xiong J G,et al.Research progressof photonic crystal fiber sensors[J].Laser &Optoelectronics Progress,2017,54(7):070006.马健,余海湖,熊家国,等.光子晶体光纤传感器研究进展[J].激光与光电子学进展,2017,54(7):070006.
    [9] Cubukcu E, Aydin K, Ozbay E, et al.Electromagnetic waves:negative refraction byphotonic crystals[J].Nature,2003,423(6940):604-605.
    [10] Parimi P V,Lu W T,Vodo P,et al.Photoniccrystals:imaging by flat lens using negativerefraction[J].Nature,2003,426(6965):404.
    [11] Liu F F,Zhu Z J,Tong Y W.Effects on imagingquality of defects in the photonic crystal with negativerefraction material[J].Acta Optica Sinica,2015,35(4):0416004.刘逢芳,朱兆杰,童元伟.光子晶体负折射材料中缺陷对成像质量的影响[J].光学学报2015,35(4):0416004.
    [12] Luo C,Johnson S G,Joannopoulos J D,et al.Subwavelength imaging in photonic crystals[J].Physical Review B,2003,68(4):045115.
    [13] PetráňM, Hadravsky′ M,Egger M D,et al.Tandem-scanning reflected light microscope[J].Journal of the Optical Society of America,1968,58(5):661-664.
    [14] Kuang C F,Li S,Liu W,et al.Breaking thediffraction barrier using fluorescence emissiondifference microscopy[J].Scientific Reports,2013,3:1441.
    [15] Willig KI, Harke B, Medda R,et al.STEDmicroscopy with continuous wave beams[J].NatureMethods,2007,4(11):915-918.
    [16] Zhao G,Kabir M M,Toussaint K C,et al.Saturated absorption competition microscopy[J].Optica,2017,4(6):633-636.
    [17] Rong Z H,Li S,Kuang C F,et al.Real-time super-resolution imaging by high-speed fluorescenceemission difference microscopy[J].Journal ofModern Optics,2014,61(16):1364-1371.
    [18] Wilson T.Resolution and optical sectioning in theconfocal microscope[J].Journal of Microscopy,2011,244(2):113-121.
    [19] Sun T X,Liu H H,Liu Z G,et al.Application ofconfocal micro X-ray fluorescence technique based onpolycapillary X-ray lens in analyzing medicine withcapsule[J].Acta Optica Sinica,2014,34(1):0134001.孙天希,刘鹤贺,刘志国,等.毛细管X光透镜共聚焦微束X射线荧光技术在胶囊类药品分析中的应用[J].光学学报,2014,34(1):0134001.
    [20] Borlinghaus R T,Kappel C.HyVolution:the smartpath to confocal super-resolution[J]. NatureMethods,2016,13(3):276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700