五莲拆离断层带动态重结晶石英颗粒的分形特征及流变参数估算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fractal Analysis of Dynamically Recrystallized Quartz Grains and Rheological Parameter Estimation of Wulian Detachment Fault Zone
  • 作者:孙煜杰 ; 倪金龙 ; 史晓晓 ; 郭颖
  • 英文作者:SUN Yujie;NI Jinlong;SHI Xiaoxiao;GUO Ying;College of Geological Sciences and Engineering,Shandong University of Science and Technology;Laboratory for Marine Mineral Resources,Qingdao National Laboratory for Marine Science and Technology;School of Earth Sciences and Resources,China University of Geosciences,Beijing;Institute of Geology and Paleontology,Linyi University;
  • 关键词:动态重结晶 ; 分形 ; 应变速率 ; 古差应力 ; 五莲拆离断层带
  • 英文关键词:dynamic recrystallization;;fractal;;strain rate;;paleo-stress;;Wulian detachment fault zone
  • 中文刊名:XDDZ
  • 英文刊名:Geoscience
  • 机构:山东科技大学地球科学与工程学院;海洋矿产资源评价与探测技术功能实验室青岛海洋科学与技术国家实验室;中国地质大学(北京)地球科学与资源学院;临沂大学地质与古生物研究所;
  • 出版日期:2019-02-15
  • 出版单位:现代地质
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金重点项目(41172089);; 山东省自然科学基金项目(ZR2018MD010,ZR2017PD001);; 山东省沉积成矿作用与沉积矿产重点实验室开放课题(DMSM2017018)
  • 语种:中文;
  • 页:XDDZ201901004
  • 页数:9
  • CN:01
  • ISSN:11-2035/P
  • 分类号:38-46
摘要
五莲拆离断层带中石英韧性变形明显,在野外主要表现为条带状、拔丝状,显微镜下主要表现为多晶石英条带,发育亚颗粒旋转重结晶和膨凸重结晶,剪切带经历了中低温条件下的变形,变形温度为300~450℃。利用分形方法对石英颗粒边界的研究表明,发生动态重结晶的石英颗粒边界具有统计学意义上的自相似性和明显的分形特征,亚颗粒旋转重结晶石英颗粒分维数介于1. 260~1. 319之间,均值1. 276;膨凸重结晶石英颗粒的分维数为1. 217~1. 297,均值为1. 256;根据石英粒径估算出亚颗粒旋转重结晶和膨凸重结晶作用变形阶段的古差异应力,分别为7. 84~21. 58MPa和18. 51~56. 65 MPa;基于分维值计算的应变速率计算公式,获得亚颗粒旋转与膨凸重结晶石英颗粒的应变速率分别为10-8. 4~10-7. 7s-1、10-10. 5~10-9. 7s-1;基于石英流变率计算,亚颗粒旋转重结晶的石英应变速率介于10-12. 88~10-11. 73s-1之间,膨凸重结晶的为10-13. 72~10-12. 46s-1。本地区韧性变形的应变速率大于一般性韧性剪切带应变速率,可能与拆离断层带的快速拆离伸展作用有关。
        Distinct ductile deformation features are developed in the quartz grains of the Wulian detachment fault zone,which displays the ribbon or wire shape in the field and multi-grain quartz ribbons,subgrain rotation( SR) and bulging recrystallization( BLG) under the microscope. This indicates that the detachment fault zonewas developed under medium-low temperatures,approximately 300 ℃ to 450 ℃. Fractal analysis shows that the boundaries of both SR and BLG recrystallized grains are statistically self-similar,with the fractal dimension values of 1. 260-1. 319( avg. 1. 276) and 1. 217-1. 297( avg. 1. 256),respectively. The paleo-stress values estimated from the SR and BLG recrystallized quartz grains are 7. 84-21. 58 MPa and 18. 51-56. 65 MPa,respectively. The strain rate results of ductile deformation by SR and BLG are different from each other. Values based on the fractal analysis are 10-8. 4-10-7. 7 s-1 and 10-10. 5-10-9. 7 s-1. According to the quartz rheology law method,the SR and BLG values are estimated to be 10-12. 88-10-11. 73 s-1 and 10-13. 72-10-12. 46 s-1. The strain rate results deduced from the method is slightly higher than those of most general ductile zones,which may be related to a rapid extensional detachment of the Wulian fault zone.
引文
[1]张祥信,彭宇,雷世和,等.内蒙古中部苏尼特左旗地区勃勒金韧性剪切带的厘定及其地质意义[J].现代地质,2017,31(3):433-442.
    [2]汤世凯,马筱,杨坤光,等.黔东桂北加里东期两类构造变形特征与成因机制探讨[J].现代地质,2014,28(1):109-118.
    [3]王新社,郑亚东,杨崇辉,等.用动态重结晶石英颗粒的分形确定变形温度及应变速率[J].岩石矿物学杂志,2001,20(1):36-41.
    [4]胡玲.显微构造地质学概论[M].北京:地质出版社,1998:1-160.
    [5] POIRIER J P. Creep of high-pressure ice VI[J]. Ices in the Solar System,1985,156:109-118.
    [6] HACKER B R,YIN A,CHRISTIE J M,et al. Differential stress,strain rate,and temperatures of mylonitization in the Ruby mountains,nevada-implications for the rate and duration of uplift[J]. Journal of Geophysical Research:Solid Earth and Planets,1990,95(6):8569-8580.
    [7] KRUHL J H,NEGA M. The fractal shape of sutured quartz grain boundaries:application as a geothermometer[J]. International Journal of Earth Sciences,1996,85(1):38-43.
    [8] TAKAHASHI M,NAGAHAMA H,MASUDA T,et al. Fractal analysis of experimentally,dynamically recrystallized quartz grains and its possible application as a strain rate meter[J]. Journal of Structural Geology,1998,20(2):269-275.
    [9] MAMTANI M A. Strain-rate estimation using fractal analysis of quartz grains in naturally deformed rocks[J]. Journal of the Geological Society of India,2010,75(1):202-209.
    [10]郑蕾,周永章,曾长育.钦杭结合带(南段)庞西垌断裂中动态重结晶石英颗粒分形特征及主要流变参数估算[J].中山大学学报(自然科学版),2013,52(2):106-114.
    [11]李振生,田晓莉,张文俊,等.安徽桐城挂车河镇地区东西向韧性剪切带分形特征及其估算应变速率适用性分析[J].科技导报,2013,31(20):15-19.
    [12]梁琛岳,刘永江,孟婧瑶,等.舒兰韧性剪切带应变分析及石英动态重结晶颗粒分形特征与流变参数估算[J].地球科学,2015,40(1):115-129.
    [13] HACKER B R,WALLIS S R,MCWILLIAMS M O,et al.40Ar/39Ar constraints on the tectonic history and architecture of the ultrahigh-pressure Sulu orogen[J]. Journal of Metamorphic Geology,2009,27(9):827-844.
    [14] AMES L. Timing of collision of the Sino-Korean and Yangtze craton:U-Pb zircon dating of coesite-bearing eclogites[J]. Geology,1993,21(4):339-342.
    [15] LI S G,HART S R,ZHENG S G,et al. Timing of collision between the North and South China Blocks—Sm-Nd isotopic age evidence[J]. Science in China:Series B,1989,32(11):1393-1400.
    [16] XU Y G,LI H Y,PANG C J,et al. On the timing and duration of the destruction of the North China Craton[J]. Chinese Science Bulletin,2009,54(19):3379-3396.
    [17] SUO S T,ZHONG Z Q,ZHOU H W,et al. Multi-stage tectonic exhumation processes of ultrahigh-pressure(UHP)metamorphic Rocks in the Dabie-Sulu Area,East-Central China[J]. Earth Science:Journal of China University of Geosciences,2012,37(1):1-17.
    [18] NI J L,LIU J L,TANG X L,et al. The Wulian metamorphic core complex:A newly discovered metamorphic core complex along the Sulu orogenic belt,eastern China[J]. Journal of Earth Science,2013,24(3):297-313.
    [19]丰成君,张鹏,戚帮申,等.郯庐断裂带附近地壳浅层现今构造应力场[J].现代地质,2017,31(1):46-70.
    [20]葛君,张泽坤,倪金龙,等.牟平—即墨断裂带南端断裂构造特征及动力学成因[J].现代地质,2015,29(4):747-754.
    [21]周术召,余心起,陈子微,等.江南造山带东段皖南地区印支事件地质表象[J].现代地质,2015,29(4):738-746.
    [22] TROUW R A,PASSCHIER C W. Microtectonics[J]. Journal of Structural Geology,1996,19(7):1-5.
    [23] STIPP M,STUNITZ H,HILBRONNER R,et al. The eastern Tonale fault zone:a natural laboratory for crystal plastic deformation of quartz over a temperature range from 250 to 700℃[J].Journal of Structural Geology,2002,24(12):1861-1884.
    [24] MANCKTELOW N,PENNACCHIONI G. The influence of grain boundary fluids on the microstructure of quartz-feldspar mylonites[J]. Journal of Structural Geology,2004,26(1):47-69.
    [25] LISTER G S,DAVIS G A. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region,USA[J]. Journal of Structural Geology,1989,11(1/2):65-94.
    [26] TURCOTTE D L. Implications of chaos,scale-invariance,and fractal statistics in geology[J]. Global and Planetary Change,1990,3(3):301-308.
    [27]高安秀树.分数维[M].沈步明,常子文,译.北京:地震出版社,1989:1-190.
    [28] KENNETH Falconer.分形几何——数学基础及其应用[M].曾文曲,译.沈阳:东北工学院出版社,1991:1-393.
    [29] LOVEJOY S. Area-perimeter relation for rain and cloud areas[J]. Science,1982,216:185-187.
    [30] STIPP M,TULLIS J. The recrystallized grain size piezometer for quartz[J]. Geophysical Research Letters,2003,30(21):2088.
    [31] TWISS R J. Theory and applicability of a recrystallized grain size paleopiezometer[J]. Pure and Applied Geophysics,1977,115(1/2):227-244.
    [32] TWISS R J. Static theory of size variation with stress for subgrains and dynamically recrystallized grains[J]. Menlo Park,1980,80:665-683.
    [33] MERCIER J C,ANDERSON D A,CARTER N L. Stress in the lithosphere:Inferences from steady state flow of rocks[J]. Pure and Applied Geophysics,1977,115(1/2):199-226.
    [34] KOCH P S. Rheology and microstructures of experimentally deformed quartz aggregates[R]. Los Angeles:University of California,1983.
    [35] KOCH P S,CHRISTIE J M,ORD A,et al. Effect of water on the rheology of experimentally deformed quartzite[J]. Journal of Geophysical Research Atmospheres,1989,941(10):13975-13996.
    [36] KRONENBERG A K,TULLIS J. Flow strengths of quartz aggregates:grain size and pressure effects due to hydrolytic weakening[J]. Journal of Geophysical Research:Solid Earth and Planets,1984,89(6):4281-4297.
    [37] PATERSON M S,LUAN F C. Quartzite rheology under geological conditions[J]. Geological Society of London,Special Publications,1990,54(1):299-307.
    [38]张波,张进江,郭磊.北喜马拉雅穹隆带然巴韧性剪切带石英动态重结晶颗粒的分维几何分析与主要流变参数的估算[J].地质科学,2006,41(1):158-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700