Jet shape modification at LHC energies by JEWEL
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Jet shape modification at LHC energies by JEWEL
  • 作者:万仁卓 ; 丁雷 ; 桂熙 ; 杨帆 ; 李双 ; 周代翠
  • 英文作者:Ren-Zhuo Wan;Lei Ding;Xi Gui;Fan Yang;Shuang Li;Dai-Cui Zhou;Nano Optical Material and Storage Device Research Center, School of Electronic and Electrical Engineering, Wuhan Textile University;College of Science, China Three Gorges University;Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University;
  • 英文关键词:quark gluon plasma;;jet quenching;;jet suppression;;jet shape modifications;;jet structure
  • 中文刊名:KNWL
  • 英文刊名:中国物理C
  • 机构:Nano Optical Material and Storage Device Research Center, School of Electronic and Electrical Engineering, Wuhan Textile University;College of Science, China Three Gorges University;Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University;
  • 出版日期:2019-05-15
  • 出版单位:Chinese Physics C
  • 年:2019
  • 期:v.43
  • 基金:Supported by National Natural Science Foundation of China(11505130,11847014,11775097 and CCNU18ZDPY04)
  • 语种:英文;
  • 页:KNWL201905015
  • 页数:7
  • CN:05
  • ISSN:11-5641/O4
  • 分类号:111-117
摘要
Jet shape measurements are employed to explore the microscopic evolution mechanisms of parton-medium interaction in ultra-relativistic heavy-ion collisions. In this study, jet shape modifications are quantified in terms of the fragmentation function F(z), relative momentum p_T~(rel), density of charged particles p(r), jet angularity girth, jet momentum dispersion p_T~(disp),and LeS ub for proton-proton(pp) collisions at 0.9, 2.76. 5.02, 7,and 13 TeV, as well as for lead-lead collisions at 2.76 TeV and 5.02 TeV by JEWEL. A differential jet shape parameter Dgirth is proposed and studied at a smaller jet radius r < 0.3. The results indicate that the medium has the dominant effect on jet shape modification, which also has a weak dependence on the center-of-mass energy. Jet fragmentation is enhanced significantly at very low z < 0.02, and fragmented jet constituents are linearly spread to larger jet-radii for p_T~(rel) < 1. The waveform attenuation phenomena is observed in p_T~(rel),girth, and Dgirth distributions. The results obtained for D_(girth) from pp to Pb + Pb, where the wave-like distribution in pp collision is ahead of Pb + Pb collisions at small jetradii, indicates a strong medium effect.
        Jet shape measurements are employed to explore the microscopic evolution mechanisms of parton-medium interaction in ultra-relativistic heavy-ion collisions. In this study, jet shape modifications are quantified in terms of the fragmentation function F(z), relative momentum p_T~(rel), density of charged particles p(r), jet angularity girth, jet momentum dispersion p_T~(disp),and LeS ub for proton-proton(pp) collisions at 0.9, 2.76. 5.02, 7,and 13 TeV, as well as for lead-lead collisions at 2.76 TeV and 5.02 TeV by JEWEL. A differential jet shape parameter Dgirth is proposed and studied at a smaller jet radius r < 0.3. The results indicate that the medium has the dominant effect on jet shape modification, which also has a weak dependence on the center-of-mass energy. Jet fragmentation is enhanced significantly at very low z < 0.02, and fragmented jet constituents are linearly spread to larger jet-radii for p_T~(rel) < 1. The waveform attenuation phenomena is observed in p_T~(rel),girth, and Dgirth distributions. The results obtained for D_(girth) from pp to Pb + Pb, where the wave-like distribution in pp collision is ahead of Pb + Pb collisions at small jetradii, indicates a strong medium effect.
引文
1 X.N.Wang and M.Gyulassy,Phys.Rev.Lett.,68:1480(1992)
    2Y.Mehtar-Tani,J.G.Milhano,and K.Tywoniuk,Int.J.Mod.Phys.A,28:1340013(2013)
    3G.-Y.Qin and X.-N.Wang,Int.J.Mod.Phys.E,24:1530014(2015)
    4 G.Aad et al(ATLAS Collaboration),JHEP,09:050(2015)
    5G.Aad et al(ATLAS Collaboration),Phys.Rev.Lett.,105:252303(2010)
    6V.Khachatryan et al(CMS Collaboration),Phys.Rev.C,84:024906(2011)
    7J.Adam et al(ALICE Collaboration),Phys.Lett.B,B746:1-14(2015)
    8G.Aad et al(ATLAS collaboration),Phys.Lett.B,719:220-241(2013)
    9G.Aad et al(ATLAS Collaboration),Phys.Lett.B,739:320-342(2014)
    10G.Aad et al(ATLAS Collaboration),Eur.Phys.J.C,77(6):379(2017)
    11 V.Khachatryan et al(CMS Collaboration),JHEP,11:055(2016)
    12Shreyasi Acharya et al(ALICE Collaboration),JHEP,10:139(2018)
    13Karen M.Burke et al(JET Collaboration),Phys.Rev.C,90:01490(2014)
    14Carlos A.Salgado,Urs Achim Wiedemann,Phys.Rev.D,68:014008(2013)
    15 Nestor Armesto et al,Phys.Rev.C,86:064904(2012)
    16Ren-Zhuo Wan,Si-Yuan Wang,Shuang Li et al,Chinese Physics C,42(11):114001(2018)
    17 Korinna C.Zapp,Eur.Phys.J.C,74:2762(2014)
    18J.M.Butterworth,A.R.Davison,M.Rubin,and G.P.Salam,Phys.Rev.Lett.,100:242001(2008)
    19A.J.Larkoski,S.Marzani,G.Soyez,and J.Thaler,JHEP,05:146(2014)
    20G.Aad et al(ATLAS Collaboration),Eur.Phys.J.C,71:1795(2011)
    21Shreyasi Acharya et al(ALICE Collaboration),J.High Energ.Phys.,2019:169(2019)
    22 M.Dasgupta,F.A.Dreyer et al,JHEP,06:057(2016)
    23 A.J.Larkoski,J.Thaler et al,JHEP,11:129(2014)
    24 M.Cacciari,G.P.Salam,G.Soyez,FastJet User Manual,Eur.Phys.J.C,72:1896(2012)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700