电磁离心铸造Al-15Si-6Ni外层颗粒增强梯度材料成形机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Forming Mechanism of Al-15Si-6Ni Outer Layer Particle Reinforced Gradient Material by Electromagnetic Centrifugal Casting
  • 作者:唐立超 ; 翟彦博
  • 英文作者:TANG Li-chao;ZHAI Yan-bo;College of Engineering and Technology, Southwestern University;
  • 关键词:NiAl_3 ; 铝硅合金 ; 离心铸造 ; 初晶Si
  • 英文关键词:NiAl_3;;Al Si alloy;;centrifugal casting;;primary Si
  • 中文刊名:ZZZZ
  • 英文刊名:Foundry
  • 机构:西南大学工程技术学院;
  • 出版日期:2019-03-10
  • 出版单位:铸造
  • 年:2019
  • 期:v.68;No.508
  • 基金:国家自然科学基金资助项目(51201140)
  • 语种:中文;
  • 页:ZZZZ201903009
  • 页数:8
  • CN:03
  • ISSN:21-1188/TG
  • 分类号:51-58
摘要
在常规的过共晶Al-Si合金离心铸造成形时,初晶Si颗粒、气孔和夹渣会同时在内层偏聚,降低了Si颗粒在增强层的强化作用。为了避免这一缺点,以Al-15%Si-6%Ni为坯料,采用电磁离心铸造的方式进行成形,成功制备了初晶Si与初晶NiAl_3颗粒在外层偏聚,气孔、夹渣在内层偏聚的梯度复合材料。对不同工艺参数下的多个试样分析显示,在离心力场中,密度较大的初晶NiAl_3颗粒会推动密度较小的初晶Si颗粒一起向外层运动,形成外层具有高体积分数的梯度复合材料。电磁场的施加,有效降低了初晶颗粒的粘连与团聚,并细化了晶粒。
        In the conventional centrifugal casting of hypereutectic Al-Si alloy, the primary Si particles, porosity and entrapped slag will segregate in the inner layer at the same time, which reduces the strengthening effect of Si particles in the reinforcing layer. In order to avoid this disadvantage, gradient composites with primary Si and primary NiAl_3 particles segregating in the outer layer, porosity and entrapped slag segregating in the inner layer were successfully prepared by electromagnetic centrifugal casting with Al-15%Si-6%Ni as blank.The results show that in the centrifugal force field, the denser primary NiAl_3 particles will push the less dense primary Si particles together to the outer layer to form a gradient composite with a high volume fraction on the outer layer. The application of the electromagnetic field can effectively reduce the adhesion and agglomeration of the primary crystal particles and refine the crystal grains.
引文
[1]翟彦博,马秀腾,陈红兵.离心铸造铝梯度复合材料的组织与性能[J].中国机械工程,2014,25(7):954-958.
    [2]ZHAI Y B,MA X T,MEI Z.Centrifugal forming mechanism of Al gradient composites reinforced with complementary primary Si and Mg2Si particles[J].Rare Metal Materials&Engineering,2014,43(4):769-774.
    [3]ZHAI Y B,LIU C M,KAI W,et al.Characteristics of two Al based functionally gradient composites reinforced by primary Si particles and Si/in situ Mg2Si particles in centrifugal casting[J].Transactions of Nonferrous Metals Society of China,2010,20(3):361-370.
    [4]陈佳,刘昌明.离心铸造铝基梯度功能复合材料自生Mg2Si/Si颗粒的定量研究[J].铸造,2011,60(2):162-166.
    [5]张宝生,程荆卫,朱景川,等.离心铸造内生强化Al3Ni/Al功能梯度材料[J].哈尔滨工业大学学报,1998(2):99-103.
    [6]吕循佳,刘昌明,林雪冬.离心铸造原位初生Si/Al3Ni颗粒增强铝基复合材料[J].特种铸造及有色合金,2012,32(4):373-377.
    [7]仲召军,李龙,周德敬.铸造Al-Si合金细化变质处理技术的研究进展[J].铸造,2016,65(3):242-247.
    [8]RAJAN T P D,PILLAIR M,PAI B C.Functionally graded Al-Al3Ni in situ intermetallic composites:Fabrication and microstructural characterization[J].Journal of Alloys&Compounds,2008,453(1):L4-L7.
    [9]WANG B,WANG J Y,TANG L D,et al.Effect of electric pulse modification on mircostructure and properties of Ni-rich Al-Si piston alloy[J].China Foundry,2016,13(2):139-142.
    [10]WATANABE Y,SATO H,FUKUI Y.Wear properties of intermetallic compound reinforced functionally graded materials fabricated by centrifugal solid-particle and in-situ methods[J].Journal of Solid Mechanics&Materials Engineering,2008,2(7):842-853.
    [11]QIAN J,LI J,XIONG J,et al.In situ synthesizing Al3Ni for fabrication of intermetallic-reinforced aluminum alloy composites by friction stir processing[J].Materials Science&Engineering A,2012,550(31):279-285.
    [12]KE L M,HUANG C P,XING L,et al.Al-Ni intermetallic composites produced in situ by friction stir processing[J].Journal of Alloys&Compounds,2010,503(2):494-499.
    [13]SHAHI A,SOHI M H,Ahmadkhaniha D,et al.In situ formation of Al-Al3Ni composites on commercially pure aluminium by friction stir processing[J].International Journal of Advanced Manufacturing Technology,2014,75(9-12):1331-1337.
    [14]MIAO L,LU Y P,ZHANG Y B,et al.Effect of ultrasonic treatment and Sr addition on microstructure of Al-20%Si alloy[J].China Foundry,2013,10(4):213-216.
    [15]MATSUDA K,WATANABE Y,SATO H,et al.Evaluation of particle size and shape distributions in Al-Al3Ni functionally graded materials fabricated by a semi-solid forming process[J].International Journal of Materials&Product Technology,2010,39(1):108-121.
    [16]NODA K,MIYAHARA K,WATANBE Y.Corrosion behavior of Al-Al3Ni and Al-Al2Cu functionally graded materials fabricated by a centrifugal method[C]//Multiscale&Functionally Graded Materials.American Institute of Physics,2008:574-578.
    [17]FUKUI Y.Fundamental investigation of functionally gradient material manufacturing system using centrifugal force[J].Social Science&Medicine,2008,56(521):67-70.
    [18]ZHANG L F,WANG S Q,DONG A P,et al.Application of electromagnetic(EM)separation technology to metal refining processes:a review[J].Metallurgical&Materials Transactions B,2014,45(6):2153-2185.
    [19]CHEN T J,LI J,LI Y D,et al.In situ fabrication of Al3Ti-Al functionally graded composites by centrifugal casting[J].International Journal of Materials&Product Technology,2010(1-2):3-19.
    [20]SONG C J,XU Z M,LI J G.In-situ Al/Al3Ni functionally graded materials by electromagnetic separation method[J].Materials Science&Engineering A,2007,445(1):148-154.
    [21]OGAWA T,WATANBE Y,SATO H,et al.Theoretical study on fabrication of functionally graded material with density gradient by a centrifugal solid-particle method[J].Composites Part A:Applied Science&Manufacturing,2006,37(12):2194-2200.
    [22]WATANBE Y,SATO H,FUKUI Y.Wear properties of intermetallic compound reinforced functionally graded materials fabricated by centrifugal solid-particle and in-situ methods[J].Journal of Solid Mechanics&Materials Engineering,2008,2(7):842-853.
    [23]OHMI T,UEDA M,ITOH Y,et al.Solidification structure of functionally graded hypereutecitic Al-Ni alloys produced by centrifugal duplex casting[J].Nippon Kinzoku Gakkaishi,2000,64(7):483-489.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700