电场与流场夹角对大气压等离子体羽动力学的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of the angle between the electric field and the gas flow one on the plasma plume dynamics at atmospheric pressure
  • 作者:张盼盼 ; 李雪辰 ; 贾鹏英 ; 楚婧娣 ; 张琦 ; 汪岩
  • 英文作者:ZHANG PanPan;LI XueChen;JIA PengYing;CHU JingDi;ZHANG Qi;WANG Yan;College of Physics Science & Technology,Hebei University;Key Laboratory of Photo-Electronics Information Materials of Hebei Province;
  • 关键词:等离子体射流 ; 等离子体羽 ; 等离子体子弹 ; 流光
  • 英文关键词:plasma jet;;plasma plume;;plasma bullet;;streamer
  • 中文刊名:JGXK
  • 英文刊名:Scientia Sinica(Physica,Mechanica & Astronomica)
  • 机构:河北大学物理科学与技术学院;河北省光电信息材料重点实验室;
  • 出版日期:2017-06-01
  • 出版单位:中国科学:物理学 力学 天文学
  • 年:2017
  • 期:v.47
  • 基金:国家自然科学基金(编号:11575050,10805013);; 河北省自然科学基金(编号:A2015201092,A2015201199);; 河北省教育厅科研基金(编号:LJRC011);; 中西部高校综合实力提升工程资助项目
  • 语种:中文;
  • 页:JGXK201706012
  • 页数:6
  • CN:06
  • ISSN:11-5848/N
  • 分类号:87-92
摘要
通过设计新型的交流激励氩气等离子体射流,在棒电极的下游产生了大气压等离子体羽.该射流与平行场射流和交叉场射流不同,它的电场与流场夹角可以在一定范围内改变.结果表明,在同一外加电压时,下游羽长度随着夹角的增大而减小.对于不同的夹角,外加电压的正、负半周期各对应着一个放电脉冲,并且放电脉冲强度随着夹角的增大而减小.利用高速影像,研究了夹角对等离子体羽动力学的影响.发现一个放电脉冲对应着一个子弹的传播过程,子弹的传播速度先增大后减小,并且其最大传播速度随着夹角的增大而减小.基于碰撞辐射模型,利用谱线强度比的方法研究了电子激发温度的空间分布,它反映出了净电场的空间分布.结果表明它与子弹传播速度的空间分布一致.
        A novel argon plasma jet driven by an alternating current voltage is developed to generate atmospheric pressure plasma plume in the downstream region of a rod electrode. The novel jet is neither a linear-field jet, nor a cross-field jet, whose angle between the electric field and the flow one can be changed easily. Result indicates that the downstream plume length decreases with increasing the angle under constant peak voltage. For different angles, the positive discharge or the negative one per half voltage cycle corresponds to a discharge pulse. Moreover, the pulse intensity decreases with increasing the angle. By fast photography, the effect of the angle is investigated on the discharge dynamics of the plasma plume. It is found that every discharge pulse corresponds to the propagating process of a plasma bullet. The bullet velocity increases firstly, then decreases during its propagating process. Moreover, its maximal velocity decreases with increasing the angle. Based on the Collisional-Radiation model, the intensity ratio of two spectral lines is investigated to obtain the spatial distribution of excited electron temperature, which corresponds to the spatial distribution of net electric field. Result suggests that the spatial distribution of the net electric field is similar with that of the bullet velocity.
引文
1 Zhang C, Shao T, Wang R, et al. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium. Phys Plasmas, 2014, 21: 103505
    2 Jablonowski H, H?nsch M A C, Dünnbier M, et al. Plasma jet’s shielding gas impact on bacterial inactivation. Biointerphases, 2015, 10: 029506
    3 Bussiahn R, Brandenburg R, Gerling T, et al. The hairline plasma: An intermittent negative dc-corona discharge at atmospheric pressure forplasma medical applications. Appl Phys Lett, 2010, 96: 143701
    4 Lee J H, Choi E H, Kim K M, et al. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing. J PhysD-Appl Phys, 2016, 49: 075402
    5 Knoll A J, Luan P, Bartis E A J, et al. Real time characterization of polymer surface modifications by an atmospheric-pressure plasma jet:Electrically coupled versus remote mode. Appl Phys Lett, 2014, 105: 171601
    6 Wegner T, Hinz A M, Faupel F, et al. Influence of nanoparticle formation on discharge properties in argon-acetylene capacitively coupled radiofrequency plasmas. Appl Phys Lett, 2016, 108: 063108
    7 Kolb J F, Mohamed A A H, Price R O, et al. Cold atmospheric pressure air plasma jet for medical applications. Appl Phys Lett, 2008, 92: 241501
    8 Li X, Di C, Jia P, et al. Characteristics of an atmospheric-pressure argon plasma jet excited by a dc voltage. Plasma Sources Sci Technol, 2013,22: 045007
    9 Zhang L, Yang D, Wang W, et al. Atmospheric air diffuse array-needles dielectric barrier discharge excited by positive, negative, and bipolarnanosecond pulses in large electrode gap. J Appl Phys, 2014, 116: 113301
    10 Despax B, Pascal O, Gherardi N, et al. Influence of electromagnetic radiation on the power balance in a radiofrequency microdischarge with ahollow needle electrode. Appl Phys Lett, 2012, 101: 144104
    11 Sakiyama Y, Graves D B. Corona-glow transition in the atmospheric pressure RF-excited plasma needle. J Phys D-Appl Phys, 2006, 39:3644–3652
    12 Teschke M, Kedzierski J, Finantu-Dinu E G, et al. High-speed photographs of a dielectric barrier atmospheric pressure plasma jet. IEEE TransPlasma Sci, 2005, 33: 310–311
    13 Lu X P, Laroussi M. Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses. J Appl Phys, 2006, 100:063302
    14 Gerling T, Nastuta A V, Bussiahn R, et al. Back and forth directed plasma bullets in a helium atmospheric pressure needle-to-plane dischargewith oxygen admixtures. Plasma Sources Sci Technol, 2012, 21: 034012
    15 Wu S, Wang Z, Huang Q, et al. Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation. PhysPlasmas, 2013, 20: 023503
    16 Oh J S, Walsh J L, Bradley J W. Plasma bullet current measurements in a free-stream helium capillary jet. Plasma Sources Sci Technol, 2012,21: 034020
    17 Puac?N, Maletic?D, Lazovic?S, et al. Time resolved optical emission images of an atmospheric pressure plasma jet with transparent electrodes.Appl Phys Lett, 2012, 101: 024103
    18 Walsh J L, Kong M G. Contrasting characteristics of linear-field and cross-field atmospheric plasma jets. Appl Phys Lett, 2008, 93: 111501
    19 Karakas E, Laroussi M. Experimental studies on the plasma bullet propagation and its inhibition. J Appl Phys, 2010, 108: 063305
    20 Li Q, Li J T, Zhu W C, et al. Effects of gas flow rate on the length of atmospheric pressure nonequilibrium plasma jets. Appl Phys Lett, 2009,95: 141502
    21 Yambe K, Konda K, Ogura K. Influence of flowing helium gas on plasma plume formation in atmospheric pressure plasma. Phys Plasmas, 2015,22: 053513
    22 Ning W, Wang L, Wu C, et al. Influence of voltage magnitude on the dynamic behavior of a stable helium atmospheric pressure plasma jet. JAppl Phys, 2014, 116: 073301
    23 Li X C, Zhang P P, Jia P Y, et al. Dynamics of atmospheric pressure plasma plumes in the downstream and upstream regions. Plasma ProcessPolym, 2016, 13: 480–487
    24 Jiang W, Tang J, Wang Y, et al. Characterization of argon direct-current glow discharge with a longitudinal electric field applied at ambient air.Sci Rep, 2014, 4: 6323
    25 Sretenovi? G B, Krsti? I B, Kova?evi? V V, et al. Spatio-temporally resolved electric field measurements in helium plasma jet. J Phys D-ApplPhys, 2014, 47: 102001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700