方波占空比对大气压辉光放电斑图的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of square wave duty ratio on pattern formation of atmospheric pressure glow discharge
  • 作者:耿金伶 ; 贾鹏英 ; 杨林伟 ; 楚婧娣 ; 张琦 ; 李雪辰
  • 英文作者:GENG JinLing;JIA PengYing;YANG LinWei;CHU JingDi;ZHANG Qi;LI XueChen;College of Physics Science and Technology, Hebei University;Key Laboratory of Photo-Electronics Information Materials of Hebei Province;
  • 关键词:辉光放电 ; 自组织斑图 ; 时空演化 ; 占空比 ; 气体温度
  • 英文关键词:glow discharge;;self-organized pattern;;spatio-temporal evolution;;duty ratio;;gas temperature
  • 中文刊名:JGXK
  • 英文刊名:Scientia Sinica(Physica,Mechanica & Astronomica)
  • 机构:河北大学物理科学与技术学院;河北省光电信息材料重点实验室;
  • 出版日期:2018-02-01
  • 出版单位:中国科学:物理学 力学 天文学
  • 年:2018
  • 期:v.48
  • 基金:国家自然科学基金(编号:11575050,10805013);; 河北省自然科学基金(编号:A2015201092,A2015201199,A2016101042);; 河北省百优人才(编号:SLRC2017021);; 河北省三三三人才基金(编号:A2016005005);; 河北省教育厅科研基金(编号:LJRC001);; 中西部高校综合实力提升工程资助项目
  • 语种:中文;
  • 页:JGXK201802008
  • 页数:7
  • CN:02
  • ISSN:11-5848/N
  • 分类号:78-84
摘要
利用方波电压激励针-水电极装置,在针水间隙产生了大气压辉光放电.随着方波电压占空比的减小,在水面上观察到了亮盘、亮盘与外环、同心三环、三环与中心点四种斑图.通过研究电压、电流波形发现,放电只产生在负极性电压下,放电电流由脉冲区和恒定区两部分组成,有很好的周期性.并且随着占空比的减小,放电的起始电压增大,峰值电流也增大.采集了水面斑图的发射光谱,发现主要有氮分子的第二正带系N_2(C-B)和第一正带系N_2(B-A)、氮分子离子的第一负带系N_2~+(A-X)c和OH的谱线带系(309 nm).利用Lifbase软件拟合OH的光谱获得了气体温度,发现随着占空比的增大,气体温度升高.通过同步触发放电电流和ICCD,研究了不同斑图的时空演化.结果表明,水面斑图在电流脉冲区逐渐形成,而在电流恒定区不发生明显变化.考虑到空间负电荷,利用放电基本理论对以上现象进行了分析和解释.
        Excited by a square wave voltage, atmospheric pressure glow discharge is generated in a needle to liquid configuration.With decreasing duty ratio of the square voltage, bright disk, bright disk with outer ring, triple ring, triple ring with concentric spot are observed on the water surface. Voltage and current waveforms indicate that the discharge occurs in the negative polarity. The discharge current consists of two parts, the pulse region and the constant region, which has a good periodicity. It is found that the inception voltage and the peak current increase with decreasing the duty ratio.Optical emission spectra are detected. It contains the second positive band of N_2, the first positive band of N_2, the first negative band of N_2~+ and the OH(309 nm). Using the Lifbase, emission spectra of the OH are used to estimate rotational temperature by fitting the experimental spectra to the simulated spectra. It is found that the gas temperature increases with increasing the duty ratio. By synchronously triggering discharge current and ICCD, temporally resolved images of the patterns are captured on the water surface. Results show that self-organized pattern gradually evolves in the pulse region,and it does not change any more in the constant region. Taking into account the space negative charge, above phenomena are analyzed and explained by using the basic theory of discharge.
引文
1 Shen J,Sun Q,Zhang Z,et al.Characteristics of DC gas-liquid phase atmospheric-pressure plasma and bacteria inactivation mechanism.Plasma Process Polym,2015,12:252-259
    2 Takai E,Kitano K,Kuwabara J,et al.Protein inactivation by low-temperature atmospheric pressure plasma in aqueous solution.Plasma Process Polym,2012,9:77-82
    3 Yang H,Zhao X,Mengen G,et al.Defluorination and mineralization of difluorophenols in water by anodic contact glow discharge electrolysis.Plasma Chem Plasma Process,2016,36:993-1009
    4 Bobkova E S,Krasnov D S,Sungurova A V,et al.Phenol decomposition in water cathode of DC atmospheric pressure discharge in air.Korean J Chem Eng,2016,33:1620-1628
    5 Gao J,Pu L,Yang W,et al.Oxidative degradation of nitrophenols in aqueous solution induced by plasma with submersed glow discharge electrolysis.Plasma Process Polym,2004,1:171-176
    6 Gai Ke,Dong Y J.Liquid phase auramine oxidation induced by plasma with glow discharge electrolysis.Plasma Sources Sci Technol,2005,14:589-593
    7 Cho Y I,Wright K C,Kim H S,et al.Stretched arc discharge in produced water.Rev Sci Instrum,2015,86:013501
    8 Shutov D A,Ol’khova E O,Kostyleva A N,et al.Destruction of sodium lauryl sulfate in its aqueous solutions by contact glow discharge treatment.High Energy Chem,2014,48:343-345
    9 Webb M R,Hieftje G M.Spectrochemical analysis by using discharge devices with solution electrodes.Anal Chem,2009,81:862-867
    10 Bruggeman P,Verreycken T,González Má,et al.Optical emission spectroscopy as a diagnostic for plasmas in liquids:Opportunities and pitfalls.J Phys D-Appl Phys,2010,43:124005
    11 Jacobs T,Carbone E,Morent R,et al.Surface modification of polymer films with a remote atmospheric pressure D.C.glow discharge:Influence of substrate location.Surf Interf Anal,2010,42:1316-1320
    12 Shirai N,Uchida S,Tochikubo F.Synthesis of metal nanoparticles by dual plasma electrolysis using atmospheric DC glow discharge in contact with liquid.Jpn J Appl Phys,2014,53:046202
    13 Liu Y X,Schüngel E,Korolov I,et al.Experimental observation and computational analysis of striations in electronegative capacitively coupled radio-frequency plasmas.Phys Rev Lett,2016,116:255002,arXiv:1606.00146
    14 Liu Y X,Korolov I,Schüngel E,et al.Striations in electronegative capacitively coupled radio-frequency plasmas:Analysis of the pattern formation and the effect of the driving frequency.Plasma Sources Sci Technol,2017,26:055024,arXiv:1703.05886
    15 Dong L,Liu F,Liu S,et al.Observation of spiral pattern and spiral defect chaos in dielectric barrier discharge in argon/air at atmospheric pressure.Phys Rev E,2005,72:046215
    16 Liu W,Wang Y,Zhang H,et al.Note:A novel dielectric barrier discharge system for generating stable patterns in wide range.Rev Sci Instrum,2016,87:056101
    17 Zhu P,Dong L,Yang J,et al.Honeycomb superlattice pattern in a dielectric barrier discharge in argon/air.Phys Plasm,2015,22:023507
    18 Wei L,Dong L,Feng J,et al.Spatio-temporal dynamics of the white-eye square superlattice pattern in dielectric barrier discharge.J Phys D-Appl Phys,2016,49:185203
    19 Liu Y,Dong L,Niu X,et al.Study on hexagonal super-lattice pattern with surface discharges in dielectric barrier discharge.Phys Plasm,2015,22:103501
    20 Li B,Dong L,Zhang C,et al.Investigation on motional characteristics of paired filaments in a dielectric barrier discharge by a high-speed framing camera.Plasm Sources Sci Technol,2014,23:054020
    21 Zhu W D,Niraula P.The missing modes of self-organization in cathode boundary layer discharge in xenon.Plasm Sources Sci Technol,2014,23:054011
    22 Zhu W,Niraula P,Almeida P G C,et al.Self-organization in DC glow microdischarges in krypton:Modelling and experiments.Plasm Sources Sci Technol,2014,23:054012
    23 Schoenbach K H,Moselhy M,Shi W.Self-organization in cathode boundary layer microdischarges.Plasm Sources Sci Technol,2004,13:177-185
    24 Takano N,Schoenbach K H.Self-organization in cathode boundary layer discharges in xenon.Plasm Sources Sci Technol,2006,15:S109-S117
    25 Miao S Y,Ren C S,Wang D Z,et al.Conical DC discharge in ambient air using water as an electrode.IEEE Trans Plasm Sci,2008,36:126-130
    26 Alyssa W,David S,Tanvir F,et al.Self-rotating DC atmospheric-pressure discharge over a water-surface electrode:Regimes of operation.Plasm Sources Sci Technol,2008,17:045001
    27 Verreycken T,Bruggeman P,Leys C.Anode pattern formation in atmospheric pressure air glow discharges with water anode.J Appl Phys,2009,105:083312
    28 Shirai N,Ibuka S,Ishii S.Self-organization pattern in the anode spot of an atmospheric glow microdischarge using an electrolyte anode and axial miniature helium flow.Appl Phys Express,2009,2:036001
    29 Shirai N,Uchida S,Tochikubo F.Influence of oxygen gas on characteristics of self-organized luminous pattern formation observed in an atmospheric DC glow discharge using a liquid electrode.Plasm Sources Sci Technol,2014,23:054010
    30 Zheng P,Wang X,Wang J,et al.Self-organized pattern formation of an atmospheric-pressure,AC glow discharge with an electrolyte electrode.Plasm Sources Sci Technol,2015,24:015010
    31 Wu S,Lu X.The role of residual charges in the repeatability of the dynamics of atmospheric pressure room temperature Plasm plume.Phys Plasm,2014,21:123509
    32 Bruggeman P,Liu J,Degroote J,et al.DC excited glow discharges in atmospheric pressure air in pin-to-water electrode systems.J Phys D-Appl Phys,2008,41:215201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700