日地平动点编队飞行自抗扰轨道维持控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:ADRC-Based Orbit Maintaining Control of Spacecraft Formation Flying Around Halo Orbits About the Sun-Earth Libration Points
  • 作者:姜春生 ; 王永 ; 李恒年 ; 楼张鹏
  • 英文作者:JIANG Chunsheng;WANG Yong;LI Hengnian;LOU Zhangpeng;State Key Laboratory of Astronautic Dynamics;Department of Automation,University of Science and Technology of China;
  • 关键词:航天器编队飞行 ; 主从编队 ; 圆型限制性三体问题 ; 平动点轨道 ; 自抗扰控制
  • 英文关键词:spacecraft formation flying;;leader / follower formation;;circular restricted three-body problem;;libration point orbits;;active disturbance rejection control
  • 中文刊名:KJKZ
  • 英文刊名:Aerospace Control and Application
  • 机构:宇航动力学国家重点实验室;中国科学技术大学自动化系;
  • 出版日期:2017-02-15
  • 出版单位:空间控制技术与应用
  • 年:2017
  • 期:v.43;No.250
  • 语种:中文;
  • 页:KJKZ201701008
  • 页数:7
  • CN:01
  • ISSN:11-5664/V
  • 分类号:52-57+63
摘要
对日地平动点附近的航天器编队控制问题进行研究,为解决基于局部线性化模型设计轨道保持控制器时存在的控制精度不高、模型精确性过度依赖等问题,提出基于圆型限制性三体问题的日-地/月系统L_2点附近主从式航天器编队飞行的相对位置控制问题的解决方法.将主航天器设定在Halo轨道上,从航天器利用自抗扰控制方法控制在主航天器周围,编队系统内的未知动力学和外部扰动由扩张状态观测器获得,并利用非线性误差反馈对其进行补偿.数值仿真结果显示采用0.1μN到10 m N的控制力即可使航天器相对位置误差控制在位置精度要求范围内,同时在存在未知干扰的情况下该方法依然具有很好的鲁棒性,从而验证优越性.
        The problem of relative position control is addressed for spacecraft formation flying around the Sun-Earth / Moon L_2 libration point. In order to avoid the problem of low precision and dependence on accurate model which occurs when controllers are designed according to linearized models,a relative position control technique is proposed that utilizes the framework of the circular restricted three-body problem. Assuming that the leader spacecraft is in a fixed halo orbit,the position of each follower relative to the leader is controlled to approach to a constant via using the active disturbance rejection control method. In this method,the unknown dynamics and external disturbances of the formation flying system are estimated by an extended state observer,which are compensated by a nonlinear state error feedback control law in real time. The numerical simulations show that the relative position errors obtained by the proposed method are all within the demanding range using the thrust from 0. 1 μN to 10mN. Meanwhile,the proposed method has good robustness against unknown disturbances and shows the superiority in control technique.
引文
[1]XU M,LIANG Y,REN K.Survey on advances in orbital dynamics and control for libration point orbits[J].Progress in Aerospace Sciences,2016,82:24-35.
    [2]KAPILA V,SPARKS A G,BUFFINGTON J M,et al.Spacecraft formation flying:dynamics and control[J].Journal of Guidance,Control,and Dynamics,1999,6(3):4137-4141.
    [3]GENDREAU K C,CASH W C,SHIPLEY A F,et al.MAXIM pathfinder X-ray interferometry mission[C]//Astronomical Telescopes and Instrumentation.International Society for Optics and Photonics.Washington D.C.:SPIE,2003.
    [4]D’AMICO S,ARDAENS J S,LARSSON R.Spaceborne autonomous formation-flying experiment on the PRISMA mission[J].Journal of Guidance,Control,and Dynamics,2012,35(3):834-850.
    [5]GILL E,SUNDARAMOORTHY P,BOUWMEESTER J,et al.Formation flying within a constellation of nanosatellites:The QB50 mission[J].Acta Astronautica,2013,82(1):110-117.
    [6]ARDAENS J S,D’AMICO S,CROPP A.GPS-based relative navigation for the Proba-3 formation flying mission[J].Acta Astronautica,2013,91:341-355.
    [7]JOSHI G,PADHI R.Robust satellite formation flying through online trajectory optimization using LQR and neural networks[J].IFAC Proceedings Volumes,2014,47(1):135-141.
    [8]MU J,GONG S,LI J.Coupled control of reflectivity modulated solar sail for Geo Sail formation flying[J].Journal of Guidance,Control,and Dynamics,2014,38(4):740-751.
    [9]WANG F,NABIL A,TSOURDOS A.Centralized/decentralized control for spacecraft formation flying near Sun-Earth L2point[C]//The 4thIEEE Conference on Industrial Electronics and Applications.New York:IEEE,2009:1159-1166.
    [10]LUQUETTE R J,SANNER R M.A nonlinear,six-degree of freedom,precision formation control algorithm,based on restricted three body dynamics[J].Advances in the Astronautical Sciences,2003,113:105-114.
    [11]KRISTIANSEN R,NICKLASSON P J.Spacecraft formation flying:a review and new results on state feedback control[J].Acta Astronautica,2009,65(11-12):1537-1552.
    [12]GURFIL P,IDAN M,KASDIN N J.Adaptive neural control of deep-space formation flying[J].Journal of Guidance Control and Dynamics,2003,26(3):491-501.
    [13]WANG F,LIU M,JIN R,et al.Adaptive backstepping controller and sliding mode controller design for formation flight in Sun-Earth L2point[J].Aerospace Science and Technology,2016.
    [14]INFELD S I,JOSSELYN S B,MURRAY W,et al.Design and control of libration point spacecraft formations[J].Journal of Guidance Control and Dynamics,2007,30(4):899-909.
    [15]PENG H J,ZHAO J,WU Z,et al.Optimal periodic controller for formation flying on libration point orbits[J].Acta Astronautica,2011,69(7):537-550.
    [16]WANG F,CHEN X Q,TSOURDOS A,et al.SunEarth L2point formation control using polynomial eigenstructure assignment[J].Acta Astronautica,2012,76(4):26-36.
    [17]BAE J,KIM Y.Adaptive controller design for spacecraft formation flying using sliding mode controller and neural networks[J].Journal of the Franklin Institute,2012,349(2):578-603.
    [18]DARVISH K,POURTAKDOUST S H,ASSADIAN N.Linear and nonlinear control strategies for formation and station keeping of spacecrafts within the context of the three body problem[J].Aerospace Science and Technology,2015,42(7):12-24.
    [19]HAN J Q.Control theory,is it a model analysis approach or a direct control approach[J].Journal of System Science and Mathematical Sciences,1989,9(4):328-335.
    [20]HAN J Q.From PID to active disturbance rejection control[J].IEEE Transactions on Industrial Electronics,2009,56(3):900-906.
    [21]KULKARNI J E,CAMPBELL M E,DULLERUD G E.Stabilization of spacecraft flight in halo orbits:an h∞approach[J].IEEE Transactions on Control Systems Technology,2006,14(3):572-578.
    [22]MCINNES C R,MCDONALD A J C,SIMMONS J F L,et al.Solar sail parking in restricted three-body systems[J].Journal of Guidance Control and Dynamics,1994,17(2):399-406.
    [23]韩京清.自抗扰控制技术-估计补偿不确定因素的控制技术[M].北京:国防工业出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700