空间微重力主动隔振系统自抗扰控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Active Disturbance Rejection Control for Microgravity Active Vibration Isolation System in Space Station
  • 作者:贾天志 ; 陈绍青 ; 鞠鹏 ; 王永
  • 英文作者:JIA Tianzhi;CHEN Shaoqing;JU Peng;WANG Yong;Department of Automation,University of Science and Technology of China;Information Science Laboratory Center of University of Science and Technology of China;
  • 关键词:空间微重力 ; 自抗扰控制 ; 主动隔振 ; 模型信息补偿
  • 英文关键词:space microgravity;;active disturbance rejection control(ADRC);;active vibration isolation;;model supplement
  • 中文刊名:XXYK
  • 英文刊名:Information and Control
  • 机构:中国科学技术大学自动化系;中国科学技术大学信息科学实验中心;
  • 出版日期:2017-06-15
  • 出版单位:信息与控制
  • 年:2017
  • 期:v.46
  • 语种:中文;
  • 页:XXYK201703008
  • 页数:8
  • CN:03
  • ISSN:21-1138/TP
  • 分类号:52-58+65
摘要
良好的空间微重力环境是开展各类空间科学实验的重要保证,然而由于各种扰动的存在,空间站内部微重力水平并不理想.基于此,本文在对微重力主动隔振系统的结构、动力学模型及控制目标进行理论分析的基础上,引入自抗扰控制方法,通过设计加速度控制回路、位置控制回路以及模型信息补偿,实现了系统位置控制和隔振控制的双重控制目标.最后,通过数字仿真对比,验证了本文所提出的控制方案具有优越的控制性能.
        A well-designed space microgravity environment is important for microgravity science experiments. However,the actual microgravity acceleration level of space stations is far from ideal because of various disturbances. To address this problem,an active disturbance rejection control( ADRC) method is proposed based on a theoretical analysis of the structure,a dynamic model,and control objectives of the microgravity active vibration isolation system. Through the acceleration and position feedback along with the model compensation,the requirement for position control and vibration isolation is satisfied. Comparisons among numerical simulations demonstrate the superior performance of the proposed scheme.
引文
[1]Liu C,Jing X,Daley S,et al.Recent advances in micro-vibration isolation[J].Mechanical Systems and Signal Processing,2015,56(1):55-80.
    [2]Han W,Sun J,Li D,et al.The research on three axis-six DOF disturbance force test technology and its application[C]//2014 International Conference on Reliability,Maintainability and Safety(ICRMS).Piscataway,NJ,USA:IEEE,2014:674-677.
    [3]Zhu F,Shi Z,Gong Z,et al.Study of space micro-vibration active isolation platform acceleration measurement[C]//2015 IEEE International Conference on Mechatronics and Automation(ICMA).Piscataway,NJ,USA:IEEE,2015:1289-1294.
    [4]Edberg D,Boucher R,Schenck D,et al.Results of the STABLE microgravity vibration isolation flight experiment[J].Guidance and Control,1996,96(1):567-581.
    [5]Yu Q,Jin D R.Introduction to the theory and examples of the microgravity vibration isolation system[J].Manned Spacefl,2008,3(1):16-18.
    [6]Grodsinsky C M,Whorton M S.Survey of active vibration isolation systems for microgravity applications[J].Journal of Spacecraft and Rockets,2000,37(5):586-596.
    [7]Whorton M S.Glovebox Integrated Microgravity Isolation Technology(g-LIMIT):A linearized state-space model[R].Keystone,CO,USA:AIAA,2004.
    [8]Liu J,Li Y,Zhang Y,et al.Dynamics and control of a parallel mechanism for active vibration isolation in space station[J].Nonlinear Dynamics,2014,76(3):1737-1751.
    [9]Ren W,Li Z,Gao Y.Microgravity active vibration isolation system for space science in china[R].Prague,CZ:AC,2010.
    [10]李宗峰,任维佳.空间微重力主动隔振技术研究[J].载人航天,2010,8(3):24-32.Li Z F,Ren W J.Space microgravity active vibration isolation technology research[J].Manned Space flight,2010,8(3):24-32.
    [11]Soleymani M,Montazeri-Gh M,Amiryan R.Adaptive fuzzy controller for vehicle active suspension system based on traffic conditions[J].Scientia Iranica,2012,19(3):443-453.
    [12]Baig R U,Pugazhenthi S.Neural network optimization of design parameters of stewart platform for effective active vibration isolation[J].Journal of Engineering and Applied Sciences,2014,9(4):78-84.
    [13]孟建军,牟健,晏永,等.高速列车垂向振动鲁棒H∞控制器设计[J].现代制造工程,2015,37(12):28-33.Meng J J,Mou J,Yan Y,et al.Robust H∞control of high-speed train vertical vibration based on LMI[J].Moder Manufacturing Engineering,2015,37(12):28-33.
    [14]Liu W,Dong W B,Wang W B,et al.Modelling and simulation for microgravity active vibration isolation platform in space[R].Toronto,Canada:IAC,2014.
    [15]陈进新,王宇.空间微重力磁悬浮平台激励器研究[J].空间科学学报,2008,28(6):584-591.Chen J X,Wang Y.Study on actuators of magnetic suspension platform under microgravity environment in space[J].Chinese Journal of Space Science,2008,28(6):584-591.
    [16]李宗峰.空间微重力环境下主动隔振系统的三维位置测量[J].宇航学报,2010,31(6):1625-1630.Li Z F.3D position measurement of active vibration isolation system under space microgravity[J].Journal of Astronautics,2010,31(6):1625-1630.
    [17]李宗峰,任维佳,王安平.空间高微重力主动隔振系统加速度测量研究[J].振动与冲击,2010,29(12):211-215.Li Z F,Ren W J,Wang A P.Study on acceleration measurement in space high quality microgravity active vibration isolation system[J].Journal of Vibration and Shock,2010,29(12):211-215.
    [18]李宗峰,任维佳,王安平,等.空间高微重力主动隔振系统有限行程约束分析[C]//中国空间科学学会第七次学术年会会议手册及文集.大连,中国:中国学术期刊电子出版社,2009:117-123.Li Z F,Ren W J,Wang A P,et al.Analysis of limited track on space high microgravity active vibration isolation system[C]//Meeting Manual and Proceedings of the 7th Annual Conference of Chinese Society of Space Research.Dalian,China:China Academic Journal Electronic Publishing House,2009:117-123.
    [19]李宗峰,刘强,任维佳.空间高微重力主动隔振系统动力学建模[J].振动与冲击,2010,29(7):1-4.Li Z F,Liu Q,Ren W J.Dynamic modeling for a space high quality microgravity active vibration isolation system[J].Journal of Vibration and Shock,2010,29(7):1-4.
    [20]韩京清.自抗扰控制及其应用[J].控制与决策,1998,13(1):19-23.Han J Q.Active disturbance rejection controller and its applications[J].Control and Decision,1998,13(1):19-23.
    [21]薛文超,黄朝东,黄一.飞行制导控制一体化设计方法综述[J].控制理论与应用,2013,30(12):1510-1519.Xue W C,Huang C D,Huang Y.Design methods for the integrated guidance and control system[J].Control Theory and Applications,2013,30(12):1510-1519.
    [22]吴忠,黄丽雅,魏孔明,等.航天器姿态自抗扰控制[J].控制理论与应用,2013,30(12):1616-1621.Wu Z,Huang L Y,Wei K M,et al.Active disturbance rejection control of attitude for spacecraft[J].Control Theory and Applications,2013,30(12):1616-1621.
    [23]张楷田,楼张鹏,王永,等.混合小推力航天器日心悬浮轨道保持控制[J].航空学报,2015,36(12):3910-3918.Zhang K T,Lou Z P,Wang Y,et al.Station-keeping control of spacecraft using hybrid low-thrust propulsion in heliocentric displaced orbits[J].Acta Aeronautica et Astronautica Sinica,2015,36(12):3910-3918.
    [24]Gao Z Q.Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the American Control Conference.Piscataway,NJ,USA:IEEE,2003:4989-4996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700