日心悬浮轨道航天器编队飞行控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Control of Spacecraft Formation Flying around Heliocentric Displaced Orbits
  • 作者:张楷田 ; 楼张鹏 ; 王永 ; 程松松
  • 英文作者:ZHANG Kaitian;LOU Zhangpeng;WANG Yong;CHENG Songsong;Department of Automation,University of Science and Technology of China;
  • 关键词:日心悬浮轨道 ; 航天器编队飞行 ; 线性自抗扰控制
  • 英文关键词:heliocentric displaced orbit;;spacecraft formation flying;;linear active disturbance rejection control(LADRC)
  • 中文刊名:XXYK
  • 英文刊名:Information and Control
  • 机构:中国科学技术大学自动化系;
  • 出版日期:2016-02-15
  • 出版单位:信息与控制
  • 年:2016
  • 期:v.45
  • 语种:中文;
  • 页:XXYK201601019
  • 页数:7
  • CN:01
  • ISSN:21-1138/TP
  • 分类号:118-123+132
摘要
针对日心悬浮轨道航天器编队飞行控制问题,应用线性自抗扰控制(LADRC)技术设计了编队飞行控制器.首先,考虑外部扰动,基于圆形限制性三体问题(CRTBP)模型推导了航天器编队日心悬浮轨道非线性动力学方程.其次,提出了一种基于扰动估计和补偿的编队飞行控制方法,避免了通过航天器局部线性化动力学方程或精确非线性动力学方程设计编队飞行控制器时存在的模型精确性过度依赖等缺陷.最后,数值仿真表明存在系统模型不确定性、初始入轨误差及地球轨道偏心率扰动的情况下,所设计的控制器实现了高精度的编队飞行控制,并优于NASA制定的5 mm编队飞行精度标准.
        We investigate the control of spacecraft formation flying around heliocentric displaced orbits,and propose a control method based on linear active disturbance rejection control( LADRC). First,we derive a nonlinear dynamic model of the spacecraft formation based on the circular restricted three-body problem( CRTBP) model,considering external disturbance. Then,we present a spacecraft formation flying control method based on the estimation of and compensation for disturbance. This control method avoids the problem of excessive dependency on model accuracy,which occurs when controllers are designed according to a locally linearized model or an accurate nonlinear model. Finally,our numerical simulation results show that the proposed method achieves high control accuracy in the presence of system uncertainties,initial injection errors,and perturbations due to the eccentric nature of the Earth's orbit. Furthermore,the precision of the formation control is within 5 millimeters,and satisfies NASA's high accuracy requirement.
引文
[1]Gurfil P,Idan M,Kasdin N J.Adaptive neural control of deep-space formation flying[J].Journal of Guidance,Control,and Dynamics,2003,26(3):491-501.
    [2]Mc Kay R,Macdonald M,Biggs J,et al.Survey of highly non-Keplerian orbits with low-thrust propulsion[J].Journal of Guidance,Control,and Dynamics,2011,34(3):645-666.
    [3]Beichman C.Terrestrial planets finder[J].Bulletin of the American Astronomical Society,1999,31(4):1119.
    [4]Peng H J,Zhao J,Wu Z G,et al.Optimal periodic controller for formation flying on libration point orbits[J].Acta Astronautica,2011,69(7):537-550.
    [5]Kulkarni J E,Campbell M E,Dullerud G E.Stabilization of spacecraft flight in halo orbits:An H∞approach[J].IEEE Transactions on Control Systems Technology,2006,14(3):572-578.
    [6]张辉,朱敏,周建亮,等.姿态角幅值约束下的太阳帆Lissajous轨道保持控制[J].空间科学学报,2014,34(6):872-880.Zhang H,Zhu M,Zhou J L,et al.Station-keeping control of solar sail Lissajous orbit with attitude angles amplitude constraint[J].Chinese Journal of Space Science,2014,34(6):872-880.
    [7]Rahmani A,Jalali M A,Pourtakdoust S H.Optimal approach to halo orbit control[C]//AIAA Guidance,Navigation,and Control Conference and Exhibit.Los Angeles,CA,USA:AIAA,2003:11-14.
    [8]Gong S P,Baoyin H X,Li J F.Solar sail formation flying around displaced solar orbits[J].Journal of Guidance,Control,and Dynamics,2007,30(4):1148-1152.
    [9]Gong S P,Baoyin H X,Li J F.Relative orbit design and control of formation around displaced solar orbits[J].Aerospace Science and Technology,2008,12(2):195-201.
    [10]龚胜平.太阳帆航天器动力学与控制研究[D].北京:清华大学,2009.Gong S P.Study on dynamics and control of sail-craft[D].Beijing:Tsinghua University,2009.
    [11]Mc Innes C R.Passive control of displaced solar sail orbits[J].Journal of Guidance,Control,and Dynamics,1998,21(6):975-982.
    [12]Mc Innes C R.The existence and stability of families of displacement two-body orbits[J].Celestial Mechanics and Dynamical Astronomy,1997,67(2):167-180.
    [13]钱航,郑建华,于锡峥,等.太阳帆航天器悬浮轨道动力学与控制[J].空间科学学报,2013,33(4):458-464.Qian H,Zheng J H,Yu X Z,et al.Dynamics and control of displaced orbits for solar sail spacecraft[J].Chinese Journal of Space Science,2013,33(4):458-464.
    [14]刘林,候锡云.深空探测器轨道力学[M].北京:电子工业出版社,2012:50-51.Liu L,Hou X Y.Dynamics in deep space exploration[M].Beijing:Publishing House of Electronic Industry,2012:50-51.
    [15]韩京清.自抗扰控制及其应用[J].控制与决策,1998,13(1):19-23.Han J Q.Active disturbance rejection controller and its applications[J].Control and Decision,1998,13(1):19-23.
    [16]薛文超,黄朝东,黄一.飞行制导控制一体化设计方法综述[J].控制理论与应用,2013,30(12):1510-1519.Xue W C,Huang C D,Huang Y.Design methods for the integrated guidance and control system[J].Control Theory and Applications,2013,30(12):1510-1519.
    [17]吴忠,黄丽雅,魏孔明,等.航天器姿态自抗扰控制[J].控制理论与应用,2013,30(12):1616-1621.Wu Z,Huang L Y,Wei K M,et al.Active disturbance rejection control of attitude for spacecraft[J].Control Theory and Applications,2013,30(12):1616-1621.
    [18]Gao Z Q.Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the American Control Conference.Piscataway,NJ,USA:IEEE,2003:4989-4996.
    [19]黄一,薛文超,杨晓霞.自抗扰控制:思想、理论分析及运用[C]//第29届中国控制会议论文集.皮斯卡塔韦,新泽西,美国:电气电子工程师协会,2010:6083-6090.Huang Y,Xue W C,Yang X X.Active disturbance rejection control:Methodology,Theoretical Analysis and Applications[C]//Proceedings of the 29th Chinese Control Conference.Piscataway,NJ,USA:IEEE,2010:6083-6090.
    [20]Mc Kay R J,Macdonald M,de Bosquillon F F,et al.Non-keplerian orbits using low thrust,high ISP propulsion systems[C]//60th International Astronautical Congress.2009:C1.2.8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700