碱化插层二维过渡金属碳化物的制备及其对铀酰离子的电化学检测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Alkalization Intercalation of MXene for Electrochemical Detection of Uranyl Ion
  • 作者:樊懋 ; 王琳 ; 裴承新 ; 石伟群
  • 英文作者:FAN Mao;WANG Lin;PEI Cheng-Xin;SHI Wei-Qun;State Key Laboratory of NBC Protection for Civilian;Institute of High Energy Physics, Chinese Academy of Sciences;
  • 关键词:铀酰离子 ; 碱化Ti3C2Tx ; 电化学检测
  • 英文关键词:uranyl ion;;alkalization of Ti3C2Tx;;electrochemical detection
  • 中文刊名:WGCL
  • 英文刊名:Journal of Inorganic Materials
  • 机构:国民核生化灾害防护国家重点实验室;中国科学院高能物理研究所;
  • 出版日期:2019-01-16 13:59
  • 出版单位:无机材料学报
  • 年:2019
  • 期:v.34;No.231
  • 基金:国家自然科学基金(21577144,11675192,21790373)~~
  • 语种:中文;
  • 页:WGCL201901010
  • 页数:6
  • CN:01
  • ISSN:31-1363/TQ
  • 分类号:95-100
摘要
二维过渡金属碳化物(MXenes)具有良好的电化学性能与辐照稳定性,其在放射性核素电化学检测领域有潜在应用价值。本研究通过碱活化的方式处理碳化钛型MXene(Ti_3C_2T_x),随后将钾插层的Ti_3C_2T_x(K-Ti_3C_2T_x)负载到玻碳电极(GCE)上得到K-Ti_3C_2T_x/GCE修饰电极。采用XRD、SEM、XPS等手段分别对Ti_3C_2T_x和K-Ti_3C_2T_x进行分析表征,并进一步研究了K-Ti_3C_2T_x/GCE对痕量铀酰离子(UO_2~(2+))的电化学检测性能。循环伏安(CV)实验结果表明,相比于GCE电极, K-Ti_3C_2T_x/GCE修饰电极对UO_2~(2+)的电化学响应显著增强。进一步使用差分脉冲伏安法(DPV)扫描,发现pH=4.0时, K-Ti_3C_2T_x/GCE修饰电极对UO_2~(2+)在铀浓度0.5~10 mg/L范围内呈现良好的线性检测关系,本方法的检测限为0.083 mg/L(S/N=3),稳定性和重复性好。
        Given the good electrochemical performance and excellent irradiation stability of two dimensional transition metal carbides(MXenes), the development of MXene-based electrode materials for radionuclide detection is very promising. In this work, Ti_3C_2 T_x MXene was activated via an alkalization strategy to form K+ intercalated Ti_3C_2T_x(K-Ti_3C_2T_x). Then the modified electrode of K-Ti_3C_2T_x/GCE was prepared on glassy carbon electrode(GCE). Ti_3C_2 T_xand K-Ti_3C_2 T_x were characterized by XRD, SEM and XPS techniques, and the electrochemical detection performance of K-Ti_3C_2T_x/GCE for trace uranyl ion(UO_2~(2+)) was further investigated. Cyclic voltammetry(CV) experiments showed that the electrochemical response of K-Ti_3C_2T_x/GCE modified electrode to UO_2~(2+) increased significantly. Under the differential pulse voltammetry(DPV) scanning at pH 4.0, the K-Ti_3C_2T_x/GCE modified electrode presented a good linear detection relationship for UO_2~(2+) in the uranium concentration range of 0.5-10mg/L. The detection limit of this method is 0.083 mg/L(S/N = 3), with decent stability and repeatability.
引文
[1]LI J,WANG X,ZHAO G,et al.Metal-organic framework-based materials:superior adsorbents for the capture of toxic and radioactive metal ions.Chemical Society Reviews,2018,47(7):2322-2356.
    [2]HONGWEI P,XIANGXUE W,WEN Y,et al.Removal of radionuclides by metal oxide materials and mechanism research.Scientia Sinica Chimica,2017,48(1):58-73.
    [3]SANTOS J S,TEIXEIRA L S G,DOS SANTOS W N L,et al.Uranium determination using atomic spectrometric techniques:an overview.Analytica Chimica Acta,2010,674(2):143-156.
    [4]WANG L,YUAN L,CHEN K,et al.Loading actinides in multilayered structures for nuclear waste treatment:the first case study of uranium capture with vanadium carbide MXene.ACS Applied Materials&Interfaces,2016,8(25):16396-16403.
    [5]JAMALI M R,ASSADI Y,SHEMIRANI F,et al.Synthesis of salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation,preconcentration and determination of uranium by inductively coupled plasma atomic emission spectrometry.Analytica Chimica Acta,2006,579(1):68-73.
    [6]MEHRA R,SINGH S,SINGH K.Uranium studies in water samples belonging to Malwa region of Punjab,using track etching technique.Radiation Measurements,2007,42(3):441-445.
    [7]ZIKOVSKY L.Determination of uranium in food in Quebec by neutron activation analysis.Journal of Radioanalytical and Nuclear Chemistry,2006,267(3):695-697.
    [8]KUMAR S A,SHENOY N S,PANDEY S,et al.Direct determination of uranium in seawater by laser fluorimetry.Talanta,2008,77(1):422-426.
    [9]MISRA N L,DHARA S,MUDHER K D S.Uranium determination in seawater by total reflection X-ray fluorescence spectrometry.Spectrochimica Acta Part B:Atomic Spectroscopy,2006,61(10/11):1166-1169.
    [10]AVIVAR J,FERRER L,CASAS M,et al.Fully automated lab-on-valve-multisyringe flow injection analysis-ICP-MS system:an effective tool for fast,sensitive and selective determination of thorium and uranium at environmental levels exploiting solid phase extraction.Journal of Analytical Atomic Spectrometry,2012,27(2):327-334.
    [11]KUMAR M,RATHORE D P S,SINGH A K.Pyrogallol immobilized Amberlite XAD-2:a newly designed collector for enrichment of metal ions prior to their determination by flame atomic absorption spectrometry.Microchimica Acta,2001,137(3/4):127-134.
    [12]CHO H R,JUNG E C,CHA W,et al.Quantitative analysis of uranium in aqueous solutions using a semiconductor laser-based spectroscopic method.Analytical Chemistry,2013,85(9):4279-4283.
    [13]ZHANG L,WANG C Z,TANG H B,et al.Rapid determination of uranium in water samples by adsorptive cathodic stripping voltammetry using a tin-bismuth alloy electrode.Electrochimica Acta,2015,174:925-932.
    [14]AHMED S,YI J.Two-dimensional transition metal dichalcogenides and their charge carrier mobilities in field-effect transistors.Nano-Micro Letters,2017,9(4):50-1-23.
    [15]XIAO J,ZHANG Y,CHEN H,et al.Enhanced performance of a monolayer MoS2/WSe2 heterojunction as a photoelectrochemical cathode.Nano-Micro Letters,2018,10(4):60-1-9.
    [16]NAGUIB M,KURTOGLU M,PRESSER V,et al.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2.Advanced Materials,2011,23(37):4248-4253.
    [17]LUKATSKAYA M R,MASHTALIR O,REN C E,et al.Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide.Science,2013,341(6153):1502-1505.
    [18]MASHTALIR O,NAGUIB M,MOCHALIN V N,et al.Intercalation and delamination of layered carbides and carbonitrides.Nature Communications,2013,4:1716-1-7.
    [19]ZHOU J,ZHA X,ZHOU X,et al.Synthesis and electrochemical properties of two-dimensional hafnium carbide.ACS Nano,2017,11(4):3841-3850.
    [20]LI H,HOU Y,WANG F,et al.Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene.Advanced Energy Materials,2017,7(4):1601847-1-6.
    [21]LUO J,ZHANG W,YUAN H,et al.Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors.ACS Nano,2017,11(3):2459-2469.
    [22]LORENCOVáL,BERTOK T,DOSEKOVA E,et al.Electrochemical performance of Ti3C2Tx MXene in aqueous media:towards ultrasensitive H2O2 sensing.Electrochimica Acta,2017,235:471-479.
    [23]ZHU X,LIU B,HOU H,et al.Alkaline intercalation of Ti3C2MXene for simultaneous electrochemical detection of Cd(II),Pb(II),Cu(II)and Hg(II).Electrochimica Acta,2017,248:46-57.
    [24]BONATO M,ALLEN G C,SCOTT T B.Reduction of U(VI)to U(IV)on the surface of TiO2 anatase nanotubes.IET Micro&Nano Letters,2008,3(2):57-61.
    [25]LIU Y,DU H,ZHANG X,et al.Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride.Chemical Communications,2016,52(4):705-708.
    [26]KANETO K,BIDAN G.Electrochemical recognition and immobilization of uranyl ions by polypyrrole film doped with calix[6]arene.Thin Solid Films,1998,331(1/2):272-278.
    [27]WANG L,TAO W,YUAN L,et al.Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment.Chemical Communications,2017,53(89):12084-12087.
    [28]OSTI N C,NAGUIB M,OSTADHOSSEIN A,et al.Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces.ACS Applied Materials&Interfaces,2016,8(14):8859-8863.
    [29]PENG Q,GUO J,ZHANG Q,et al.Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide.Journal of the American Chemical Society,2014,136(11):4113-4116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700