新型阶跃纤芯微结构包层抗弯曲大模场面积光纤
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Novel Bend Resistant Large Mode Area Microstructure Fiber Using Step Index Core
  • 作者:娄淑君 ; 田晨光 ; 盛新志
  • 英文作者:LOU Shu-jun;TIAN Chen-guang;SHENG Xin-zhi;Shandong Vocational College of Science & Technology;Beijing Jiaotong University;
  • 关键词:微结构光纤 ; 抗弯曲 ; 模场面积 ; 单模
  • 英文关键词:microstructure fiber;;bend resistance;;large mode area;;single mode
  • 中文刊名:GDYG
  • 英文刊名:Electro-Optic Technology Application
  • 机构:山东省科技职业学院;北京交通大学;
  • 出版日期:2018-08-15
  • 出版单位:光电技术应用
  • 年:2018
  • 期:v.33;No.161
  • 基金:国家自然科学基金项目(61475016)
  • 语种:中文;
  • 页:GDYG201804002
  • 页数:8
  • CN:04
  • ISSN:12-1444/TN
  • 分类号:5-12
摘要
提出一种具有阶跃纤芯和微结构内包层的大模场面积光纤,通过在光纤中引入阶跃纤芯及高折射率棒环形排布的微结构内包层,有效解决传统结构中大模场面积与单模运转的矛盾制约,突破了由弯曲导致光纤弯曲损耗高和弯曲方向角敏感等问题。应用全矢量有限元法结合完美匹配层对光纤特性进行了优化。研究结果表明,在工作波长为2μm、弯曲半径为10 cm时,可以获得高达1 412μm2的模场面积,高阶模与基模损耗比达到767,且对弯曲方向角不敏感。所提出的光纤结构具有大模场面积、优异的单模特性、低的弯曲损耗以及弯曲方向不敏感等显著优势,对推进高功率小型化光纤激光器的发展具有重要意义。
        A large mode area fiber with step index core and inner microstructure cladding is proposed. By using step index core and inner microstructure cladding formed by high doped rods with a ring array, the contradictory constraints of large mode field area and single mode in traditional structure can be effectively solved. Furthermore,high bend loss and sensitivity to bend orientation are also eliminated. The optimization of fiber properties are carried out by using full-vector finite element model with perfectly matched layer. Research results show that large mode area reaches up to 1 412 μm2 and the loss ratio of high-order mode to fundamental mode is up to 767 at the wavelength of 2 μm when the fiber is bent at the bend radius of 10 cm. In addition, fiber properties are independent of bend orientation. Due to its advantage of large mode area, excellent single mode, low bend loss and insensitivity to bend orientation, the proposed fiber is of great significance to promote the development of high power miniaturized fiber lasers.
引文
[1] Moulton P F, Rines G A, Slobodtchikov E V, et al. Tm-doped fiber lasers:fundamentals and power scaling[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1):85-92.
    [2] Knight J, Birks T, Cregan R, et al. Large mode area photonic crystal fibre[J]. Electronics Letters, 1998, 34(13):1347-1348.
    [3] Limpert J, Liem A, Reich M, et al. Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier[J]. Optics Express, 2004, 12(7):1313-1319.
    [4] Chen M Y, Li Y R, Zhou J, et al. Design of asymmetric large-mode area optical fiber with low-bending loss[J].Journal of Lightwave Technology, 2013, 31(3):476-481.
    [5] Wang X, Lou S Q, Lu W L. Rectangle lattice large mode area photonic crystal fiber for 2μm compact high-power fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5):200-205.
    [6] Wang X, Lou S Q, Lu W L. Bending orientation insensitive large mode area photonic crystal fiber with triangular core[J]. Photonics Journal, IEEE, 2013, 5(4):7100408-7100408.
    [7] Jain D, Baskiotis C, Sahu J K. Bending performance of large mode area multi-trench fibers[J]. Optics Express,2013, 21(22):26663-26670.
    [8] Wang X, Lou S Q, Lu W L, et al. Bend resistant large mode area fiber with multi-trench in the core[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016,22(2):4400508.
    [9] Tang G, Zhu T, Lin W, et al. Single-mode large mode-fieldarea Tm3+doped lead-silicate glass photonic crystal fibers[J]. IEEE Photonics Technology Letters, 2017, 29(5):450-453.
    [10] Molardi C, Sun B, Yu X, et al. Polarization-maintaining large mode area fiber design for 2-μm operation[J]. IEEE Photonics Technology Letters, 2016, 28(22):2483-2486.
    [11] Jain D, Sahu J K. Large mode area single trench fiber for2μm operation[J]. J Lightwave Technol, 2016, 34(14):3412-7.
    [12] Sun J, Kang Z, Wang J, et al. Novel bending-resistant design of two-layer low-index trench fiber with parabolic-profile core[J]. Optics Express, 2014, 22(15):18036-43.
    [13] Olszewski J, Szpulak M, Martynkien T, et al. Analytical evaluation of bending loss oscillations in photonic crystal fibers[J]. Optics Communications, 2007, 269(2):261-270.
    [14] Tsuchida Y, Saitoh, Koshiba M. Design of single-moded holey fibers with large-mode-area and low bending losses:the significance of the ring-core region[J]. Optics Express,2007, 15(4):1794-1803.
    [15] Berenger J P. A perfect matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114(2):185-200.
    [16] Saitoh K, Sato Y, Koshiba M. Coupling characteristics of dual-core photonic crystal fiber couplers[J]. Optics Express, 2003, 11(24):3188-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700