切流-横轴流玉米脱粒系统改进设计及台架试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Improved design and bench test based on tangential flow-transverse axial flow maize threshing system
  • 作者:杨立权 ; 王万章 ; 张红梅 ; 李连豪 ; 王美美 ; 侯明涛
  • 英文作者:Yang Liquan;Wang Wanzhang;Zhang Hongmei;Li Lianhao;Wang Meimei;Hou Mingtao;School of Mechanical and Electrical Engineering, Henan Agricultural University;Collaborative Innovation Center of Henan Grain Crops;School of Mechanical Engineering, Anyang Institute of Technology;
  • 关键词:谷物 ; 收获机 ; 试验 ; 脱粒系统 ; 籽粒破碎率 ; 含水率 ; 滚筒线速度
  • 英文关键词:grain;;harvesters;;experiments;;threshing system;;grain broken rate;;moisture content;;drum peripheral velocity
  • 中文刊名:NYGU
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:河南农业大学机电工程学院;河南粮食作物协同创新中心;安阳工学院机械工程学院;
  • 出版日期:2018-01-08
  • 出版单位:农业工程学报
  • 年:2018
  • 期:v.34;No.328
  • 基金:河南省现代农业产业技术体系(S2017-02-G07);; “十三五”现代农业产业技术体系(CARS-03)
  • 语种:中文;
  • 页:NYGU201801006
  • 页数:9
  • CN:01
  • ISSN:11-2047/S
  • 分类号:43-51
摘要
对玉米脱粒过程的研究,理论分析与数学建模存在着理想假设的局限性,整机田间试验受制于系统结构、环境条件而不能深入测试分析。为便于室内研究玉米脱粒过程,以4YL-4/5型收获机脱粒系统为参照,设计了切流-横轴流脱粒试验系统,结构设计模块化,可根据需要更换脱粒滚筒等关键零部件或调整技术参数,以便兼顾开展多种谷物脱粒试验研究。工作参数标定表明,试验台架可满足最高37 k W的工作负载,满足滚筒线速度为0~29.06 m/s、喂入量为0~8.08kg/s的谷物脱粒试验。在入口脱粒间隙为36 mm,出口间隙为12 mm,喂入量为2.6 kg/s的条件下,切流滚筒采用螺旋柱齿结构、横轴流滚筒采用柱齿-板齿结构形式,以不同的横轴流滚筒线速度为测试速度,对含水率在22%~32%的玉米果穗进行脱粒试验,试验表明:切流滚筒的脱粒物质量占比随着含水率的增加而减弱,当含水率在28%以下,切流滚筒与横轴流滚筒脱粒筛分段的脱粒能力几乎相当,当含水率高于28%,切流滚筒的脱粒物质量占比下降明显。脱粒系统在线速度15.84~18.72 m/s和含水率为22%~26%的条件下,籽粒破碎率指标满足国标规定值≤5%。在滚筒线速度为17.28 m/s、含水率为24%~26%区间内,脱粒系统的籽粒破碎率最低,平均值为1.7%。通过脱粒试验台,将玉米脱粒过程的试验研究与田间测试有效结合,可为玉米籽粒收获机脱粒系统的设计提供科学依据。
        The research on the process of maize threshing, the theoretical analysis and the mathematical modeling have the limitation of ideal hypothesis. The field experiment of whole machine is subject to the system structure or the site and can not be deeply analyzed. Therefore, based on the situation of breeding varieties in Huang-Huai-Hai region, the characteristics of agricultural farming, and the status quo of harvesting machinery, in order to facilitate the study of corn threshing process indoors, with the 4 YL-4/5 harvester threshing system, the structural design is optimized, and a tangential flow-transverse axial flow threshing test system is designed. The technical parameters and threshing test scheme of threshing mechanism are studied to reduce the grain broken rate, which is the primary target, and at the same time, we explore the technological potential of the maize kernel harvesting and explore the technical bottlenecks that restrict the industrialization development of maize production in the region. The test bench consists of power system, feeding system, threshing system and auxiliary mechanism, and the structure design is modular, the concave threshing clearance can be adjusted, and different styles of threshing drums or concave plate sieve components can be replaced according to the need, in order to carry out a variety of grain threshing test research. The calibration of the working parameters indicates that the test system can meet the maximum load of 37 k W, and meet the test requirements of the threshing peripheral velocity between 0-29.06 m/s and the feeding amount between 0-8.08 kg/s. Based on the statistical analysis of the biological characteristics of tested maize ear, under the condition that the inlet threshing clearance is 36 mm, the outlet threshing clearance is 12 mm and the feeding amount is 2.6 kg/s, tangential flow feeding drum with spiral tooth structure and transverse axial flow drum with column tooth-plate tooth structure are used to thresh the corn ear with water content of 22%-32%, taking different peripheral velocities of transverse axial flow threshing drum as the test speed. The experiments show that, the threshing capacity of the tangential flow drum decreases with the increase of the moisture content. When the moisture content is below 28%, the threshing capacity of the tangential drum is almost equal to threshing sieving section of the transverse flow drum. When the water content is higher than 28%, the threshing capacity of the tangential flow drum decreases significantly. The grain broken rate index of the threshing system satisfies the national standard of equal to or lower than 5% under the condition of the drum peripheral velocity of 15.84-18.72 m/s and the moisture content of 22%-26%. With the drum peripheral velocity of 17.28 m/s and the moisture content of 24%-26%, the threshing system has the lowest grain broken rate with an average of 1.7%. Through the threshing test system, the theoretical analysis of maize threshing process can be effectively combined with the field experiment, and the related experimental conclusions provide a scientific basis for the design of the corn combine harvester threshing system.
引文
[1]李淑芳,张春宵,路明,等.玉米籽粒自然脱水速率研究进展[J].分子植物育种,2014,12(4):825-829.Li Shufang,Zhang Chunxiao,Lu Ming,et al.Research development of kernel dehydration rate in maize[J].Molecular Plant Breeding,2014,12(4):825-829.(in Chinese with English abstract)
    [2]李少昆,王克如,谢瑞芝,等.玉米子粒机械收获破碎率研究[J].作物杂志,2017(2):76-80.Li Shaokun,Wang Keru,Xie Ruizhi,et al.Grain breakage rate of maize by mechanical harvesting in China[J].Crops,2017(2):76-80.(in Chinese with English abstract)
    [3]Babi?L J,Radojèin M,Pavkov I,et al.Physical properties and compression loading behaviour of corn seed[J].International Agrophysics,2013,27(2):119-126.
    [4]Mohamed A F,Abdel M.Mechanical properties of corn kernels[J].Misr J.Ag.Eng.,2009,26(4):1901-1922.
    [5]李心平,李玉柱,马福丽,等.玉米种子抗压特性及裂纹生成规律[J].农业机械学报,2011,42(8):94-98.Li Xinping,Li Yuzhu,Ma Fuli,et al.Anti-pressing properties and crack formation law of corn seed[J].Transactions of the Chinese Society for Agricultural Machinery,2011,42(8):94-98.(in Chinese with English abstract)
    [6]牛海华,赵武云,史增录.玉米籽粒力学特性的研究进展及应用[J].中国农机化,2011(2):101-104.Niu Haihua,Zhao Wuyun,Shi Zenglu.Progress of research and application in mechanical properties of corn kernel[J].Chinese Agricultural Mechanization,2011(2):101-104.(in Chinese with English abstract)
    [7]徐立章,李耀明,王显仁.谷物脱粒损伤的研究进展分析[J].农业工程学报,2009,25(1):303-307.Xu Lizhang,Li Yaoming,Wang Xianren.Research development of grain damage during threshing[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2009,25(1):303-307.(in Chinese with English abstract)
    [8]Volkovas V,Petkevi?ius S,?pokas L.Establishment of maize grain elasticity on the basis of impact load[J].Mechanika,2006,6(62):64-67.
    [9]侯明涛,张红梅,王万章,等.玉米籽粒物理机械特性及机械化收获适应性[J].江苏农业科学,2016,77(7):354-357.Hou Mingtao,Zhang Hongmei,Wang Wanzhang,et al.Physical and mechanical properties of maize kernels and adaptability of mechanized harvest[J].Journal of Jiangsu Agricultural Sciences,2016,77(7):354-357.(in Chinese with English abstract)
    [10]张新伟,易克传,高连兴.玉米种子与脱粒部件碰撞过程中的接触力学分析[J].中国农学通报,2015,31(14):285-290.Zhang Xinwei,Yi Kechuan,Gao Lianxing.Contacting mechanics analysis during impact process between corn seeds and threshing component[J].Chinese Agricultural Science Bulletin,2015,31(14):285-290.(in Chinese with English abstract)
    [11]张克平,贾娟娟,吴劲锋.谷物力学特性研究进展[J].食品工业科技,2014,35(2):369-374.Zhang Keping,Jia Juanjuan,Wu Jinfeng.Research progress in the mechanical properties of cereal[J].Science and Technology of Food Industry,2014,35(2):369-374.(in Chinese with English abstract)
    [12]相茂国,张道林,李春宁,等.影响玉米脱粒性能的因素分析与研究[J].农机化研究,2015(1):188-191.Xiang Maoguo,Zhang Daolin,Li Chunning,et al.Analysis of influence factor on corn threshing performance[J].Journal of Agricultural Mechanization Research,2015(1):188-191.(in Chinese with English abstract)
    [13]Petkevi?ius S,?pokas L,Steponavi?ius D.Substantiation of technological parameters of wet maize ear threshing[J].Agronomy Research,2008,6(Supp.):271-280.
    [14]?pokas L,Steponavi?ius D,Petkevi?ius S.Impact of technological parameters of threshing apparatus on grain damage[J].Agronomy Research,2008,6(Supp.):367-376.
    [15]蔡超杰.玉米种穗脱粒装置的研究[D].北京:中国农业机械化科学研究院,2016.Cai Chaojie.Research on Seed Corn Threshing Device[D].Beijing:Chinese Academy of Agricultural Mechanization Sciences,2016.(in Chinese with English abstract)
    [16]赵武云.组合式螺旋板齿种子玉米脱粒装置研究[D].杨凌:西北农林科技大学,2012.Zhao Wuyun.Research on Combined Type of Spiral Bar Tooth Threshing Mechanism for Seed Corn[D].Yangling:North West Agriculture and Forestry University,2012.(in Chinese with English abstract)
    [17]Petre I M.Combine Harvesters Theory,Modeling and Design[M].Boca Raton:Taylor&Francis Group,2016.
    [18]Petre I M,Heinz-Dieter K.Modeling and simulation of grain threshing and separation in threshing units-Part I[J].Computers and Electronics in Agriculture,2008,60(1):96-104.
    [19]Petre I M,Heinz-Dieter K.Modeling and simulation of grain threshing and separation in axial threshing units-Part II[J].Computers and Electronics in Agriculture,2008,60(1):105-109.
    [20]Petre I M,Heinz-Dieter K.Mathematical model of material kinematics in an axial threshing unit[J].Computers and Electronics in Agriculture,2007,58(2):93-99.
    [21]Petre I M.Mathematical model of threshing process in an axial unit with tangential feeding[C]//AIC 2002 Meeting CSAE/SCGR Program,Saskatoon,2002:1-8.
    [22]Tijskens E,Ramon H,Baerdemaeker J D.Discrete element modelling for process simulation in agriculture[J].Journal of Sound and Vibration,2003,266(3):493-514.
    [23]姜瑞涉,王俊.农业物料物理特性及其应用[J].粮油加工与食品机械,2002(1):35-37.Jiang Ruishe,Wang Jun.Physical properties of agricultural materials and their application[J].Grain and Oil Processing and Food Machinery,2002(1):35-37.(in Chinese with English abstract)
    [24]Zhong Wenqi,Yu Aibing,Liu Xuejiao,et al.DEM/CFD-DEM modelling of non-spherical particulate systems:Theoretical developments and applications[J].Powder Technology,2016,302:108-152.
    [25]马征,李耀明,徐立章.农业工程领域颗粒运动研究综述[J].农业机械学报,2013,44(2):22-29.Ma Zheng,Li Yaoming,Xu Lizhang.Summarize of particle movements research in agricultural engineering realm[J].Transactions of the Chinese Society for Agricultural Machinery,2013,44(2):22-29.(in Chinese with English abstract)
    [26]Yu Yajun,Fu Hong,Yu Jianqun.DEM-based simulation of the corn threshing process[J].Advanced Powder Technology,2015,26(5):1400-1409.
    [27]于建群,付宏,周海玲,等.基于离散元法的玉米脱粒过程分析方法:中国专利,ZL201110293826.8[P].2012-04-18.
    [28]于亚军.基于三维离散元法的玉米脱粒过程分析方法研究[D].长春:吉林大学,2013.Yu Yajun.Research on Analysis Method of Corn Threshing Based on 3D DEM[D].Changchun:Jilin University,2013.(in Chinese with English abstract)
    [29]郭庆辰,康浩冉,王丽娥,等.黄淮区籽粒机收玉米标准及育种模式探讨[J].农业科技通讯,2016(1):159-162.Guo Qingchen,Kang Haoran,Wang Li'e,et al.Corn mechanized grain harvest standard and breeding mode investigation in Huanghuaihai district[J].Bulletin of Agricultural Science and Technology,2016(1):159-162.(in Chinese with English abstract)
    [30]中国农业机械化科学研究院.农业机械设计手册[M].北京:中国农业科学技术出版社,2007:1022.
    [31]全国农业机械标准化技术委员会.纹杆式脱粒滚筒型式尺寸和技术要求:JB/T9778.2-1999[S].北京:中国标准出版社,1999.
    [32]蒋恩臣,孙占峰,潘志洋,等.基于CFD-DEM的收获机分离室内谷物运动模拟与试验[J].农业机械学报,2014,45(4):117-122.Jiang Enchen,Sun Zhanfeng,Pan Zhiyang,et al.Numerical simulation based on CFD-DEM and experiment of grain moving laws in inertia separation chamber[J].Transactions of the Chinese Society for Agricultural Machinery,2014,45(4):117-122.(in Chinese with English abstract)
    [33]王立军,李洋,梁昌,等.贯流风筛清选装置内玉米脱出物运动规律研究[J].农业机械学报,2015,46(9):122-127.Wang Lijun,Li Yang,Liang Chang,et al.Motion law of maize mixture in cross air-and-screen cleaning device[J].Transactions of the Chinese Society for Agricultural Machinery,2015,46(9):122-127.(in Chinese with English abstract)
    [34]郭炎,李耀明,李洪昌,等.纵轴流脱粒分离装置脱出物的径向分布规律[J].农机化研究,2011(12):110-112.Guo Yan,Li Yaoming,Li Hongchang,et al.The radial distribution regularities of emerging object with longitudinal axial flow threshing and separating device[J].Journal of Agricultural Mechanization Research,2011(12):110-112.(in Chinese with English abstract)
    [35]朱金光,冷峻,张荣玲,等.ADAMS虚拟实验在收获机滚筒动平衡中的应用[J].农业装备与车辆工程,2013,51(9):56-58.Zhu Jinguang,Leng Jun,Zhang Rongling,et al.Application of ADAMS virtual experiments for dynamic balance of the harvester roller[J].Agricultural Equipment&Vehicle Engineering,2013,51(9):56-58.(in Chinese with English abstract)
    [36]中国机械工业联合会.机械振动恒态(刚性)转子平衡品质要求第1部分:规范与平衡允差的检验:GB/T 9239.1-2006[S].北京:中国标准出版社,2006.
    [37]中国机械工业联合会.机械振动恒态(刚性)转子平衡品质要求第2部分:平衡误差:GB/T 9239.2-2006[S].北京:中国标准出版社,2006.
    [38]中国机械工业联合会.玉米收获机械技术条件:GB/T21962-2008[S].北京:中国标准出版社,2008.
    [39]中国机械工业联合会.玉米收获机械试验方法:GB/T21961-2008[S].北京:中国标准出版社,2008.
    [40]高连兴,李飞,张新伟,等.含水率对种子玉米脱粒性能的影响机理[J].农业机械学报,2011,42(12):92-96.Gao Lianxing,Li Fei,Zhang Xinwei,et al.Mechanism of moisture content affect on corn seed threshing[J].Transactions of the Chinese Society for Agricultural Machinery,2011,42(12):92-96.(in Chinese with English abstract)
    [41]Ferrero R,Lima M,Gonzalezandujar J L.Spatio-temporal dynamics of maize yield water constraints under climate change in Spain[J].PLo S ONE,2014,9(5):1-10.
    [42]Ekstrom G A,Liljedahl J B,Peart R M.Thermal expansion and tensile properties of corn rernels and their relationship to cracking during drying[J].Trans of ASAE,1966,9(4):556-561.
    [43]高连兴,李心平.玉米种子脱粒损伤机理与脱粒设备研究[M].北京:北京师范大学出版社,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700