氮化钛纳米颗粒作为锂氧电池正极催化剂的电化学行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrochemical behavior of TiN nanoparticles as the cathode catalyst for lithium-oxygen batteries
  • 作者:陈明珠 ; 吴爱民 ; 靳晓哲 ; 秦振海 ; 黄昊
  • 英文作者:CHEN Mingzhu;WU Aimin;JIN Xiaozhe;QIN Zhenhai;HUANG Hao;Key Laboratory of Energy Materials & Devices (Liaoning Province),School of Materials Science and Engineering, Dalian University of Technology;
  • 关键词:锂氧电池 ; 氮化钛 ; 纳米材料 ; 正极 ; 催化剂
  • 英文关键词:lithium-oxygen battery;;titanium nitride;;nanomaterial;;cathode;;catalyst
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:大连理工大学材料科学与工程学院辽宁省能源材料及器件重点实验室;
  • 出版日期:2019-03-31
  • 出版单位:功能材料
  • 年:2019
  • 期:v.50;No.426
  • 基金:中央高校基本科研业务费重点实验室专项经费资助项目(DUT17ZD101);; 国家自然科学基金资助项目(51171033,21233010);; 常州工业支撑计划资助项目(CE20160022)
  • 语种:中文;
  • 页:GNCL201903001
  • 页数:7
  • CN:03
  • ISSN:50-1099/TH
  • 分类号:7-13
摘要
采用直流电弧等离子体法在氮气和氢气气氛下制备氮化钛纳米颗粒,作为锂氧电池正极催化剂。通过透射电镜(TEM)、X射线衍射(XRD)等对材料进行微观结构表征,结果显示纳米氮化钛呈现立方结构,晶粒尺寸为30.00~60.00 nm,晶化程度良好。氮化钛纳米颗粒作为锂氧电池正极催化剂,电流密度为50 mA/g时,放电比容量达到3 037 mAh/g;在定容500 mAh/g,电流密度为75 mA/g时,电池可稳定循环,能量效率维持在62%左右。此外,充放电循环后电极片的XRD、SEM结果证明锂氧电池的主要反应为过氧化锂的生成与分解。
        The titanium nitride nanoparticles were prepared by DC arc-discharge method and served as the cathode catalyst for lithium-oxygen batteries. Various analytical methods, including X-ray diffraction, Transmission Electron Microscopy and etc., are used to characterize the microstructure and morphology of the TiN nanoparticles. The results show that the TiN nanoparticles had a cubic structure with good crystallinity. Its grain size varied from 30 to 60 nm. The rotating disk electrode(RDE) test shows that the TiN nanoparticles had dual catalytic properties of both oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). As the cathode catalyst for the lithium-oxygen batteries, the TiN electrode delivered 3 037 mAh/g discharge specific capacity at a current density of 50 mA/g. The energy efficiency of the battery could maintain in 62% at a limited capacity of 500 mAh/g and a current density of 75 mA/g. Furthermore, XRD and SEM results of the cycled TiN electrode show that the main reaction of lithium-oxygen batteries was the formation and decomposition of lithium peroxide.
引文
[1] Jiménez A R, Kl?psch R, Wagner R, et al. A step toward high-energy silicon-based thin film Lithium-ion batteries[J]. ACS Nano, 2017, 11(5): 4731-4744.
    [2] Stevens P, Toussaint G. The lithium air battery: fundamentals[M]. Germany: Springer, 2014: 201-214.
    [3] Jiang Xie, Liu Xiaofei, Zhao Shiyong, et al. Research progress of organic electrolyte based Lithium-air batteries[J]. Acta Chimica Sinica, 2014, 72(4): 417-426(in Chinese).蒋颉, 刘晓飞, 赵世勇, 等. 基于有机电解液的锂氧电池研究进展[J]. 化学学报, 2014, 72(4): 417-426.
    [4] Yang Fengyu, Zhang Leilei, Xu Jijing, et al. Progress of cathode material and electrolyte in non-aqueous Li-air battery[J]. Chinese Journal of Inorganic, 2013, 29(8): 1563-1573(in Chinese).杨凤玉, 张蕾蕾, 徐吉静, 等. 非水系锂氧电池的正极材料和电解液研究进展[J]. 无机化学学报, 2013, 29(8): 1563-1573.
    [5] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(2): 19-29.
    [6] Zhou H S, He P, Wang Y G. The development and prospects of advanced batteries in the post-lithium battery era[J]. Physics, 2012, 41(2): 86-94.
    [7] Guo Xiangxin, Huang Shiting, Zhao Ning, et al. Rapid development and critical issues of secondary Lithium-air batteries[J]. Journal of Inorganic Materials, 2014, 29(2): 113-123(in Chinese).郭向欣, 黄诗婷, 赵宁,等. 二次锂氧电池研究的快速发展及其急需解决的关键科学问题[J]. 无机材料学报, 2014, 29(2): 113-123.
    [8] Grande L, Paillard E, Hassoun J, et al. The Lithium/air battery: still an emerging system or a practical reality [J]. Advanced Materials, 2015, 27(5): 784-800.
    [9] Li F, Zhang T, Zhou H. Challenges of non-aqueous Li-O2 batteries:electrolytes, catalysts,and anodes[J]. Energy & Environmental Science, 2013, 6(4): 1125-1141.
    [10] Lu Y C, Kwabi D G, Yao K P C, et al. The discharge rate capability of rechargeable Li-O2 batteries[J]. Energy & Environmental Science, 2011, 4(8): 2999-3007.
    [11] Mccloskey B D, Bethune D S, Shelby R M, et al. Solvents' critical role in nonaqueous Lithium-oxygen battery electrochemistry[J]. The Journal of Physical Chemistry Letters, 2011, 2(10): 1161-1166.
    [12] Thapa A K, Saimen K, Ishihara T. Pd/MnO2 air electrode catalyst for rechargeable lithium/air battery[J]. Electrochemical and Solid-State Letters, 2010, 13(11): A165-A167.
    [13] Su D, Dou S, Wang G. Gold nanocrystals with variable index facets as highly effective cathode catalysts for Lithium-oxygen batteries[J]. NPG Asia Materials, 2015, 7(1): e155-e155.
    [14] Ottakam T M M, Freunberger S A, Peng Z, et al. The carbon electrode in nonaqueous Li-O2 cells[J]. Journal of American Chemical Society, 2013, 135(1): 494-500.
    [15] Shitta-Bey G O, Mirzaeian M, Hall P J. The electrochemical performance of phenol-formal dehyde based activated carbon electrodes for lithium/oxygen batteries[J]. Journal of The Electrochemical Society, 2012, 159(3): A315-A320.
    [16] Zhang J, Zhao Y, Zhao X, et al. Porous perovskite LaNiO3 nanocubes as cathode catalysts for Li-O2 batteries with low charge potential[J]. Scientific Reports, 2014, 4: 6005-6010.
    [17] Debart A, Paterson A J, Bao J, et al. Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable Lithium batteries[J]. Angewandte Chemie International Edition, 2008, 47(24): 4521-4524.
    [18] Li S, Xu J, Ma Z, et al. NiMn2O4 as an efficient cathode catalyst for rechargeable lithium-air batteries[J]. Chemical Communications, 2017, 53(58): 8164-8167.
    [19] Qiu F, He P, Jiang J, et al. Ordered mesoporous TiC-C composites as cathode materials for Li-O2 batteries[J]. Chemical Communications, 2016, 52(13): 2713-2716.
    [20] Li F, Ohnishi R, Yamada Y, et al. Carbon supported TiN nanoparticles: an efficient bifunctional catalyst for non-aqueous Li-O2 batteries[J]. Chemical Communications, 2013, 49(12): 1175-1177.
    [21] Cheng Fangyi, Chen Jun. Nanoporous catalysts for rechargeable Li-air batteries[J]. Acta Chimica Sinica, 2013, 71(4): 473-477(in Chinese).程方益, 陈军. 可充锂氧电池多孔纳米催化剂[J]. 化学学报, 2013, 71(4): 473-477.
    [22] Kwon J A, Kim M S, Shin D Y, et al. First-principles understanding of durable titanium nitride (TiN) electrocatalyst supports[J]. Journal of Industrial and Engineering Chemistry, 2017, 49: 69-75.
    [23] Luo W B, Pham T V, Guo H P, et al. Three-dimensional array of TiN@Pt3Cu nanowires as an efficient porous electrode for the lithium-oxygen battery[J]. ACS Nano, 2017, 11(2): 1747-1754.
    [24] Milokv H H S I, Navinkk' B, Metikd-Hukovic M. Electrochemical and thermal oxidation of TiN coatings studied by XPS[J]. Surface and Interface Analysis, 1995,23 (7-8): 529-539.
    [25] Kim B G, Jo C, Shin J, et al. Ordered mesoporous titanium nitride as a promising carbon-free cathode for aprotic Lithium-oxygen batteries[J]. ACS Nano, 2017, 11(2): 1736-1746.
    [26] Avasarala B, Haldar P. Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions[J]. Electrochimica Acta, 2010, 55 (28): 9024-9034.
    [27] Thotiyl M M O, Sampath S. Electrochemical oxidation of ethanol in acid media on titanium nitride supported fuel cell catalysts[J]. Electrochimica Acta, 2011, 56(10): 3549-3554.
    [28] Guo Z, Zhou D, Liu H, et al. Synthesis of ruthenium oxide coated ordered mesoporous carbon nanofiber arrays as a catalyst for lithium oxygen battery[J]. Journal of Power Sources, 2015, 276: 181-188.
    [29] Mccloskey B D, Valery A, Luntz A C, et al. Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li-O2 batteries[J]. Journal of Physical Chemistry Letters, 2013, 4(17): 2989-2993.
    [30] Shui J L, Okasinski J S, Kenesei P, et al. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries[J]. Nature Communications, 2013, 4(4): 2255-2261.
    [31] Assary R S, Lu J, Du P, et al. The effect of oxygen crossover on the anode of a Li-O2 battery using an ether-based solvent:insights from experimental and computational studies[J]. ChemSusChem, 2013, 6(1): 51-55.
    [32] Cao R, Lee J S, Liu M, et al. Non-precious catalysts:recent progress in non-precious catalysts for metal-air batteries[J]. Advanced Energy Materials, 2012, 2(7): 701-701.
    [33] Lee C K, Park Y J. Polyimide-wrapped carbon nanotube electrodes for long cycle Li-air batteries[J]. Chemical Communications, 2014, 51(7): 1210-1213.
    [34] Zhang S S, Foster D, Read J. Discharge characteristic of a non-aqueous electrolyte Li/O2 battery[J]. Journal of Power Sources, 2010, 195(4): 1235-1240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700