基于AR模型的时变水声信道统计分析方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Statistical analysis method for time-varying underwater acoustic channel based on AR model
  • 作者:戴文舒 ; 鲍凯凯 ; 陈新华 ; 孙兴丽
  • 英文作者:DAI Wenshu;BAO Kaikai;CHEN Xinhua;SUN Xingli;College of Information and Communication Engineering,North Unversity of China;North Automatic Control Technology Institute;The Institute of Acoustics of the Chinese Academy of Sciences;
  • 关键词:水声信道建模 ; AR模型 ; 最小二乘拟合 ; 统计特性
  • 英文关键词:underwater acoustic channel modeling;;AR model;;least square fitting;;statistical feature
  • 中文刊名:ZDCJ
  • 英文刊名:Journal of Vibration and Shock
  • 机构:中北大学信息与通信工程学院;北方自动控制技术研究所;中国科学院声学研究所;
  • 出版日期:2019-07-15
  • 出版单位:振动与冲击
  • 年:2019
  • 期:v.38;No.345
  • 基金:山西省面上青年基金项目(201701D221017)
  • 语种:中文;
  • 页:ZDCJ201913033
  • 页数:5
  • CN:13
  • ISSN:31-1316/TU
  • 分类号:239-243
摘要
Bellhop波束追踪方法利用射线理论在给定的几何和声源频率下能够得到准确的水下信道,但没有考虑到随机信道变化,将位置的不确定性和表面波浪的变化引起大尺度效应建模为1阶AR模型,理论建模分析并仿真验证了信道功率增益随通信带宽和通信距离的关系,采用最小二乘拟合对信道功率增益做局部平均,从而对时变水声信道概率密度函数进行估计。表面波浪的时变引起路径长度的变化,通过计算信道功率增益自相关函数可以估计模型参数,从而为信道预测提供可能。
        Bellhop beam tracking method can be used to get correct underwater acoustic channels under given geometry and sound source frequency with the ray theory, but it does not consider random channel changes. Here, the large-scale effect caused by position uncertainty and surface wave change was modeled as a first-order AR model. The relation among channel power gain, communication bandwidth and communication distance was theoretically modeled and analyzed, and this relation was verified with numerical simulation. The least square fitting was adopted to do local average of channel power gain, and then estimate the probability density function of a time-varying underwater acoustic channel. It was shown that time-varying surface waves can cause path length change; through calculating the auto-correlation function of channel power gain, the model parameters can be estimated to provide a possibility for channel prediction.
引文
[1] 姜喆,王海燕,赵瑞琴.水声稀疏信道估计与大范围自适应平滑预测研究[J].西北工业大学学报,2012,32(10):844-851.JIANG Zhe,WANG Haiyan,ZHAO Ruiqin.Underwater acoustic sparse channel estimation and long-rang adaptive smooth prediction[J].Journal of Xi’an Technological University,2012,32(10):844-851.
    [2] 刘伯胜,雷佳煜.水声学原理[M].哈尔滨:哈尔滨工程大学出版社,2010.
    [3] RADOSEVIC A,DUMAN T,PROAKIS J.Channel prediction for adaptive modulation in underwater acoustic communications[C]//IEEE Oceans’11 Europe Conference.Santander,Spain,2011.
    [4] LI W,PREISIG J.Estimation of rapidly time-varying sparse channels[J].IEEE J Ocean Eng,2007,32(4):927-939.
    [5] STOJANOVIC M.Underwater acoustic communications:design considerations on the physical layer[C]//IEEE/IFIP Fifth Annual Conference on Wireless on Demand Network Systems and Services.Germany:WONS,2008.
    [6] PREISIG J C.Performance analysis of adaptive equalization for coherent acoustic communications in the time-varying ocean environment[J].J Acoust Soc Amer,2005,118(1):267-278.
    [7] CHITRE M.A high-frequency warm shallow water acoustic communications channel model and measurements[J].J Acoust Soc Amer,2007,122(5):2580-2586.
    [8] QARABAQI P,STOJANOVIC M.Modeling the large scale transmission loss in underwater acoustic channels[C]//Proc 49th Annu Allerton Conf Commun Control Comput.Monticello,IL,2011.
    [9] PORTER M B.Bellhop code[M/OL].http://oalib.hlsresearch.com/rays/index.html.
    [10] RADOSEVIC A,PROAKIS J G.Statistical characterization and capacity of shallow water acoustic channels[C]//Proc IEEE Oceans’ 09 Conference.Bremen,Germany,2009.
    [11] QARABAQI P,STOJANOVIC M.Statistical modeling of a shallow water acoustic communication channel[C]//Proc Underwater Acoustic Measurements Conference.Nafplion,Greece,2009.
    [12] QARABAQI P,STOJANOVIC M.Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels[J].IEEE Journal of Oceanic Engineering,2013,38(4):701-716.
    [13] 马典军,葛万成.基于统计自回归模型的时变信道均衡[J].电子技术,2010,37(12):62-64.MA Dianjun,GE Wancheng.Time-varing channel equalization based on statistic auto regression model[J].Electronic Technology,2010,37(12):62-64.
    [14] AHMED R,STOJANOVIC M.Adaptive power control for underwater acoustic communications[C].Oceans 2011 IEEE-Spain.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700