电动往复式步态矫形器机构优化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism Design and Optimization for Electric Reciprocating Gait Orthoses
  • 作者:陈殿生 ; 宁萌 ; 阮子喆 ; 张本光
  • 英文作者:CHEN Diansheng;NING Meng;RUAN Zizhe;ZHANG Benguang;Robotics Institute, Beihang University;
  • 关键词:矫形器 ; 下肢康复 ; 驱动机构 ; 结构设计 ; 优化分析
  • 英文关键词:reciprocating gait orthosis;;lower limb rehabilitation;;driving mechanism;;mechanism design;;optimization analysis
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:北京航空航天大学机器人研究所;
  • 出版日期:2015-11-05
  • 出版单位:机械工程学报
  • 年:2015
  • 期:v.51
  • 基金:北京市科技计划重大资助项目(D141100003614002)
  • 语种:中文;
  • 页:JXXB201521005
  • 页数:9
  • CN:21
  • ISSN:11-2187/TH
  • 分类号:39-47
摘要
针对原有往复式步态矫形器对患者体力消耗较大、步态差异大且失真严重、膝关节康复效果微弱等问题,对矫形器进行改进设计,分别在矫形器的髋关节和膝关节处增加了驱动机构,设计出一种电动往复式步态矫形器(Electric reciprocating gait orthosis,ERGO),可通过穿戴在患者下肢上,协助无行走能力的患者实现行走功能。由于人体下肢运动关节的复杂性,电动往复式步态矫形器与人体下肢运动关节不可避免存在一定的差异,因此需要通过机构的优化使得人-机之间髋、膝关节的运动规律及下肢末端轨迹更加接近,从而避免患者在使用过程中由于人-机运动偏差而造成不必要的伤害。在此基础上通过仿真分析和试验验证,证明了电动式往复式步态矫形器的可行性和优化结果的有效性。
        Aiming at solving the problems of great physical consumption of patients, serious distortion and big difference in gaits, and weak effect in knee rehabilitation in traditional reciprocating gait orthoses(RGO), improved design is developed in RGO. Driving mechanism is added to knee joints and hip joints on the electric reciprocating gait orthoses to develop an electric reciprocating gait orthoses(ERGO), which can be worn on the lower limb of patients and help those without walking ability to realize walking function. Because of the complexity in the human lower limb movement joints, differences between orthoses and human lower limb movement joint exist inevitably. Therefore, through the optimization in mechanism to make the movement law and terminal trajectory closer in hip and knee between man and machine, unnecessary damage to patients caused by the man-machine movement deviation in the use process is effectively avoided. Based on the above research and experimental tests, the feasibility and effectiveness of optimize results of ERGO is verified.
引文
[1]BLEEKE G,HEEG M,NIEL V H.Ambulation with the reciprocating gait orthosis.Experience in 15 children with myelomeningocele or paraplegia[J].Acta Orthopaedica Scandinavica,1997,68(5):403-407.
    [2]IJZERMAN M J,BAARDMAN G,HERMENS H J.The influence of the reciprocal cable linkage in the advanced reciprocating gait orthosis on paraplegic gait performance[J].Prosthetics and Orthotic International,1997,21(1):52-61.
    [3]MIRBAGHERI M M,NIU X,KINDIG M,et al.The effects of locomotor training with a robotic-gait orthosis(Lokomat)on neuromuscular properties in persons with chronic SCI[C]//2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBC),August 28-September 1,2012,San Diego,CA.IEEE,2012:3854-3857.
    [4]DUSCHAU W A,BRUNSCH T,LUNENBURGER L,et al.Adaptive support for patient-cooperative gait rehabilitation with the lokomat[C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems Acropolis Conventin Center,September 22-26,2008,Nice,France.IEEE,2008:2357-2361.
    [5]BANALA S K,AGRAWAL S K,SCHOLZ J P.Active leg exoskeleton(ALEX)for gait rehabilitation of motor-impaired patients[C]//Proceedings of the 2007IEEE 10th International Conference on Rehabilitation Robotics,June 12-15,2007,Noordwijk,Netherlands.IEEE,2007:401-407.
    [6]BANALA S K,AGRAWAL S K,KIM S H,et al.Novel gait adaptation and neuromotor training results using an active leg exoskeleton[J].IEEE/ASME Transactions on Mechatronics,2010,15(2):216-225.
    [7]YAMAMOTO S,SHIBATA Y,IMAI S,et al.Development of gait training system powered by pneumatic actuator like human musculoskeletal system[C]//2011 IEEE International Conference on Rehabilitation Robotics(ICORR),June 29-July 1,2011,Zurich,Switzerland.IEEE,2011:151-158.
    [8]KONG K,MOON H,HWANG B,et al.Robotic rehabilitation treatments:Realization of aquatic therapy effects in exoskeleton systems[C]//IEEE International Conference on Robotics and Automation,May 12-17,2009,Kobe,Japan.IEEE,2009:1923-1928.
    [9]KONG K,MOON H,JEON D.et al.Control of an exoskeleton for realization of aquatic therapy effects[J].IEEE/ASME Transactions on Mechatronics,2010,15(2):191-200.
    [10]KAWAMOTO H,SANKAI Y.Power assist method based on phase sequence driven by interaction between human and robot suit[C]//13th IEEE International Workshop on Robot and Human Interactive Communication,September20-22,2004,Roman.IEEE,2004:491-496.
    [11]LEE S,SANKAI Y.Power assist control for walking aid with HAL-3 based on EMG and impedance adjustment around knee joint[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems,2002.IEEE,2002:1499-1504.
    [12]史小华,王洪波,孙利,等.外骨骼型下肢康复机器人结构设计与动力学分析[J].机械工程学报,2014,50(3):41-48.SHI Xiaohua,WANG Hongbo,SUN Li.Design and dynamic analysis of an exoskeletal lower limbs rehabilitation robot[J].Journal of Mechanical Engineering,2014,50(3):41-48.
    [13]潘礼正,宋爱国,徐国政.基于SVM-GDFNN的上肢康复训练机器人处方诊断[J].机械工程学报,2013,49(13):17-23.PAN Lizheng,SONG Aiguo,XU Guozheng.Prescription diagnosis for upper-limb rehabilitation training robot based on SVM-GDFNN[J].Journal of Mechanical Engineering,2013,49(13):17-23.
    [14]石芝喜,刘四文,唐丹,等.四种截瘫步行矫形器在脊髓损伤患者中的应用[J].中国康复医学杂志,2007,22(4):382-384.SHI Zhixi,LIU Siwen,TANG Dan,et al.Four paraplegic gait orthosis in patients with spinal cord injury[J].Chinese Journal of Rehabilitation Medicine,2007,22(4):382-384.
    [15]孙嘉利,欧阳亚涛,唐丹,等.截瘫步行器对截瘫患者日常生活活动能力的影响[J].中国康复医学杂志,2007,22(7):609-611.SUN Jiali,OUYANG Yatao,TANG Dan,et al.Influence of reciprocating gait orthosis on the activities of daily living in paraplegic patients[J].Chinese Journal of Rehabilitation Medicine,2007,22(7):609-611.
    [16]孙嘉利,唐丹,欧阳亚涛,等.重心移动式步行矫形器截瘫患者步行功能的影响[J].中国组织工程与临床研究康复,2007,2(13):2437-2440.SUN Jiali,TANG Dan,OUYANG Yatao,et al.Influence of reciprocating gait orthosis on walking function in paraplegic patients after ambulation[J].Chinese Journal of Tissue Engineering Research,2007,2(13):2437-2440.
    [17]华大年.连杆机构设计与应用创新[M].北京:机械工业出版社,2008.HUA Danian.Innovation of design and application of linkage[M].Beijing:China Machine Press,2008.
    [18]雷英杰,张善文,李续武,等.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.LEI Yingjie,ZHANG Shanwen,LI Xuwu,et al.MATLAB genetic algorithm toolbox and its application[M].Xi’an:Xidian University Press,2005.
    [19]HIDLER J,WISMAN W,NECKEL N.Kinematic trajectories while walking within the Lokomat robotic gait-orthosis[J].Clinical Biomechanics,2008,23(10):1251-1259.
    [20]BNEAKEY J W,MARQUETTE S H.Beyond the four-bar knee[J].Journal of Prosthetics and Orthotics,1998,10(3):77-80.
    [21]李剑锋,吴希瑶,邓楚慧.人-机运动相容型下肢康复训练外骨骼机构的构型设计与分析[J].中国生物医学工程学报,2010,31(5):720-728.LI Jianfeng,WU Xiyao,DENG Chuhui.Configuration design and analysis of the human-machine kinematically compatible type exoskeleton mechanism for lower limb rehabilitation training[J].Chinese Journal of Biomedical Engineering,2010,31(5):720-728.
    [22]张自强,李剑锋,陶春静,等.下肢康复外骨骼机构人机约束力分析[J].机械设计与制造,2013,2013(12):177-180.ZHANG Ziqiang,LI Jianfeng,TAO Chunjing,et al.Human-machine constrained force analysis of the lower limb rehabilitation exoskeleton mechanism[J].Machinery Design&Manufacture,2013,2013(12):177-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700