High power, microjoule-level diffraction-limited picosecond oscillator based on Nd:GdVO_4 bulk crystal
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High power, microjoule-level diffraction-limited picosecond oscillator based on Nd:GdVO_4 bulk crystal
  • 作者:JIE ; GUO ; WEI ; WANG ; HUA ; LIN ; XIAOYAN ; LIANG
  • 英文作者:JIE GUO;WEI WANG;HUA LIN;XIAOYAN LIANG;State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences;
  • 中文刊名:GZXJ
  • 英文刊名:光子学研究(英文版)
  • 机构:State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences;
  • 出版日期:2019-04-25
  • 出版单位:Photonics Research
  • 年:2019
  • 期:v.7
  • 基金:Ministry of Science and Technology of the People’s Republic of China(MOST)(2017YFB0405202)
  • 语种:英文;
  • 页:GZXJ201904008
  • 页数:5
  • CN:04
  • ISSN:31-2126/O4
  • 分类号:82-86
摘要
1.2 μJ pulses with average power of 9 W were directly generated from a passively mode-locked picosecond oscillator based on a Nd:GdVO4 bulk crystal. Short cavity operation in continuous wave and mode-locking regimes was conducted first to confirm the resonator performance and proper alignment. With a carefully calibrated q-preserving multi-pass cell inserted into the laser cavity, the cavity length of the original short cavity was extended while the mode-matching condition was maintained fairly well. Compared with the short cavity, nearly fivefold energy enhancement was achieved while the diffraction-limited beam quality was undisturbed. To the best of our knowledge, this is the highest output power ever produced from a mode-locked oscillator based on a single bulk crystal at a repetition rate below 10 MHz without cavity dumping.
        1.2 μJ pulses with average power of 9 W were directly generated from a passively mode-locked picosecond oscillator based on a Nd:GdVO4 bulk crystal. Short cavity operation in continuous wave and mode-locking regimes was conducted first to confirm the resonator performance and proper alignment. With a carefully calibrated q-preserving multi-pass cell inserted into the laser cavity, the cavity length of the original short cavity was extended while the mode-matching condition was maintained fairly well. Compared with the short cavity, nearly fivefold energy enhancement was achieved while the diffraction-limited beam quality was undisturbed. To the best of our knowledge, this is the highest output power ever produced from a mode-locked oscillator based on a single bulk crystal at a repetition rate below 10 MHz without cavity dumping.
引文
1.A.Major,V.Barzda,P.A.E.Piunno,S.Musikhin,and U.J.Krull,“An extended cavity diode-pumped femtosecond Yb:KGW laser for applications in optical DNA sensor technology based on fluorescence lifetime measurements,”Opt.Express 14,5285-5294(2006).
    2.S.Leveque-Fort,D.N.Papadopoulos,S.Forget,F.Balembois,and P.Georges,“Fluorescence lifetime imaging with a low-repetition-rate passively mode-locked diode-pumped Nd:YVO4oscillator,”Opt.Lett.30,168-170(2005).
    3.L.Zhao,D.Tang,X.Wu,and H.Zhang,“Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,”Opt.Lett.35,2756-2758(2010).
    4.D.Herriott,H.Kogelnik,and R.Kompfner,“Off-axis paths in spherical mirror interferometers,”Appl.Opt.3,523-526(1964).
    5.A.Sennaroglu and J.G.Fujimoto,“Design criteria for Herriott-type multi-pass cavities for ultrashort pulse lasers,”Opt.Express 11,1106-1113(2003).
    6.A.Sennaroglu,Solid-State Lasers and Applications(CRC Press,2007).
    7.A.Mostafazadeh,H.Cankaya,and A.Sennaroglu,“Pulse energy optimization in multipass-cavity mode-locked femtosecond lasers,”IEEE J.Sel.Top.Quantum Electron.21,1100408(2015).
    8.R.P.Prasankumar,Y.Hirakawa,A.M.Kowalevicz,F.X.Kaertner,J.G.Fujimoto,and W.H.Knox,“An extended cavity femtosecond Cr:LiSAF laser pumped by low cost diode lasers,”Opt.Express 11,1265-1269(2003).
    9.C.Cihan,A.Muti,I.Baylam,A.Kocabas,U.Demirbas,and A.Sennaroglu,“70 femtosecond Kerr-lens mode-locked multipasscavity Alexandrite laser,”Opt.Lett.43,1315-1318(2018).
    10.A.Sennaroglu,A.M.Kowalevicz,F.X.Kaertner,and J.G.Fujimoto,“High,performance,compact,prismless,low-threshold 30-MHz Ti:Al2O3laser,”Opt.Lett.28,1674-1676(2003).
    11.H.Cankaya,J.G.Fujimoto,and A.Sennaroglu,“Low-threshold,12-MHz,multipass-cavity femtosecond Cr4+:forsterite laser,”Laser Phys.19,281-284(2009).
    12.V.Z.Kolev,M.J.Lederer,B.Luther-Davies,and A.V.Rode,“Passive mode locking of a Nd:YVO4laser with an extra-long optical resonator,”Opt.Lett.28,1275-1277(2003).
    13.B.Luther-Davies,E.Gamaly,A.Rode,V.Kolev,N.Madsen,M.Duering,and J.Giesekus,“Applications of high power slow modelocked lasers for ablation and non-linear optics,”Proc.SPIE 5448,432-440(2004).
    14.Y.Ruan,B.Luther-Davies,W.Li,A.Rode,V.Kolev,and S.Madden,“Large phase shifts in As2S3waveguides for all-optical processing devices,”Opt.Lett.30,2605-2607(2005).
    15.G.I.Petrov,N.I.Minkovski,and V.V.Yakovlev,“High-energy ultrashort laser pulses from a simple oscillator and their efficient frequency conversion,”Proc.SPIE 5332,55-62(2004).
    16.C.J.Saraceno,F.Emaury,C.Schriber,M.Hoffmann,M.Golling,T.Sudmeyer,and U.Keller,“Ultrafast thin-disk laser with 80μJ pulse energy and 242 W of average power,”Opt.Lett.39,9-12(2014).
    17.A.V.Rode,N.R.Madsen,V.Z.Kolev,E.G.Gamaly,B.LutherDavies,J.M.Dawes,and A.Chan,“Subpicosecond and picosecond laser ablation of dental enamel:comparative analysis,”Proc.SPIE5340,76-86(2004).
    18.B.Luther-Davies,A.V.Rode,N.R.Madsen,and E.G.Gamaly,“Picosecond high-repetition-rate pulsed laser ablation of dielectrics:the effect of energy accumulation between pulses,”Opt.Eng.44,051102(2005).
    19.E.G.Gamaly,N.R.Madsen,M.Duering,A.V.Rode,V.Z.Kolev,and B.Luther-Davies,“Ablation of metals with picosecond laser pulses:evidence of long-lived nonequilibrium conditions at the surface,”Phys.Rev.B 71,174405(2005).
    20.P.Gao,H.Lin,J.Li,J.Guo,H.Yu,H.Zhang,and X.Liang,“Megahertz-level,high-power picosecond Nd:LuVO4regenerative amplifier free of period doubling,”Opt.Express 24,13963-13970(2016).
    21.B.Luther-Davies,V.Z.Kolev,M.J.Lederer,N.R.Madsen,A.V.Rode,J.Giesekus,K.M.Du,and M.Duering,“Table-top 50-W laser system for ultra-fast laser ablation,”Appl.Phys.A 79,1051-1055(2004).
    22.U.Wegner,J.Meier,and M.J.Lederer,“Compact picosecond modelocked and cavity-dumped Nd:YVO4laser,”Opt.Express 17,23098-23103(2009).
    23.P.Gao,J.Guo,J.F.Li,H.Lin,and X.Liang,“34.7μJ,<10 ps,megahertz-level laser output based on a cavity-dumped mode-locked Nd:GdVO4oscillator,”Opt.Express 23,17995-18001(2015).
    24.C.Gerhard,F.Druon,P.Georges,V.Couderc,and P.Leproux,“Stable mode-locked operation of a low repetition rate diode-pumped Nd:GdVO4laser by combining quadratic polarisation switching and a semiconductor saturable absorber mirror,”Opt.Express 14,7093-7098(2006).
    25.H.Lin,J.Guo,P.Gao,H.Yu,and X.Liang,“High power,diffraction limited picosecond oscillator based on Nd:GdVO4bulk crystal withσpolarized in-band pumping,”Opt.Express 24,13957-13962(2016).
    26.V.Magni,“Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,”Appl.Opt.25,107-117(1986).
    27.A.M.Kowalevicz,A.Sennaroglu,A.T.Zare,and J.G.Fujimoto,“Design principles of q-preserving multipass-cavity femtosecond lasers,”J.Opt.Soc.Am.B 23,760-770(2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700