微波诱导等离子体离子迁移谱用于痕量爆炸物检测的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microwave Induced Plasma Ionization Ion Mobility Spectrometry for Detection of Trace Explosives
  • 作者:代渐雄 ; 赵忠俊 ; 朱爽 ; 段忆翔
  • 英文作者:DAI Jian-Xiong;ZHAO Zhong-Jun;ZHU Shuang;DUAN Yi-Xiang;Analytical and Testing Center,Sichuan University;Research Center of Analytical Instrumentation,Sichuan University;College of Chemical Engineering,Sichuan University;School of Life Sciences,Sichuan University;
  • 关键词:离子迁移谱 ; 微波诱导等离子体 ; 爆炸物 ; 痕量检测
  • 英文关键词:Ion mobility spectrometry;;Microwave induced plasma;;Explosives;;Trace detection
  • 中文刊名:FXHX
  • 英文刊名:Chinese Journal of Analytical Chemistry
  • 机构:四川大学分析测试中心;四川大学分析仪器研究中心;四川大学化学工程学院;四川大学生命科学学院;
  • 出版日期:2018-08-13
  • 出版单位:分析化学
  • 年:2018
  • 期:v.46
  • 基金:国家自然科学基金项目(No.21605107)资助~~
  • 语种:中文;
  • 页:FXHX201808015
  • 页数:7
  • CN:08
  • ISSN:22-1125/O6
  • 分类号:87-93
摘要
基于微波诱导等离子体离子源,结合自制的离子迁移谱仪,探讨了负离子模式下反应离子的组分及形成机理,并首次将其应用于痕量爆炸物的快速检测。研究结果表明,等离子体维持气流速会影响反应离子的组分、强度及仪器的灵敏度;通过对比不同等离子体维持气流速下的空气背景迁移谱图、质谱图和季戊四醇四硝酸酯(PETN)的迁移谱图,优化了等离子体维持气流速(300 mL/min);此时反应离子峰的强度高达4 n A(脉冲宽度100μs),主要成分为NO_3~-。在优化条件下,系统考察了微波诱导等离子体离子迁移谱仪对爆炸物检测的响应线性范围及检出限。本方法对硝化甘油(NG)和PETN的线性范围分别为0.1~10.0 ng和0.1~5.0 ng,对NG、环三亚甲基三硝胺(RDX)、PETN、2,4,6-三硝基甲苯(TNT)、2,4-二硝基甲苯(2,4-DNT)的检出限(S/N=3)分别为8、14、12、14和13 pg,实现了痕量爆炸物的快速检测。
        The development of safe and high-performance ionization source as an alternative is highly demanded. In this work,a negative ion mode of microwave induced plasma ionization ion mobility spectrometer( MIPI-IMS) was developed. The components of reactant ions were investigated in negative ion mode.Experiments showed that the reactant ions and the sensitivity in detecting pentaerythritol tetranitrate( PETN)were mainly influenced by the discharge gas flow rate. The comparison between the background of air and the mobility spectrum of PETN were displayed under different discharge gas flow rates. The optimized discharge gas flow rate was 300 mL/min. The reactant ion was mainly NO_3~-,which was confirmed by mass spectrometry.The signal intensity was higher than 4 n A with gate pulse width of 100 μs under the optimized parameters.Finally,the MIPI-IMS was used in the detection of trace explosives such as nitroglycerine( NG),1,3,5-trinitrohexahydro-1,3,5-triazine( RDX),pentaerythritol tetranitrate( PETN),2,4,6-trinitrotoluene( TNT),and 2,4-dinitrotoluene( 2,4-DNT). The linear range for MIPI-IMS in detecting NG and PETN were 100 pg-10 ng and 100 pg-5 ng respectively. The limits of detection of NG,2,4-DNT,TNT,RDX and PETN were 8 pg,14 pg,12 pg,14 pg and 13 pg,respectively.
引文
1 Mc Daniel E W,Mason E A.Mobility and diffusion of ions in gases,New York:John Wiley&Sons,1973
    2 LI Zhuang,LIN Bing-Tao,KONG De-Yi,CHEN Chi-Lai,CHENG Yu-Peng,WANG Huan-Qin,MEI Tao.Spectroscopy and Spectral Analysis,2011,31(1):12-15李庄,林丙涛,孔德义,陈池来,程玉鹏,王焕钦,梅涛.光谱学与光谱分析,2011,31(1):12-15
    3 Caygill J S,Davis F,Higson S P J.Talanta,2012,88(1):14-29
    4 Karasek F W.Anal.Chem.,1974,46(8):710A-720A
    5 LIU Ji-Wei,PENG Li-Ying,HUANG Wei,WANG Wei-Guo,JIANG Dan-Dan,SUN Qi,LI Hai-Yang.Chinese J.Anal.Chem.,2016,44(8):1185-1192刘骥巍,彭丽英,黄卫,王卫国,蒋丹丹,孙琪,李海洋.分析化学,2016,44(8):1185-1192
    6 Baumbach J I,Eiceman G A.Appl.Spectrosc.,1999,53(9):338A-355A
    7 Roscioli K M,Davis E,Siems W F,Mariano A,Su W,Guharay S K,Hill H H.Anal.Chem.,2011,83(15):5965-5971
    8 Chen C,Dong C,Du Y,Cheng S,Han F,Li L,Wang W,Hou K,Li H.Anal.Chem.,2010,82(10):4151-4157
    9 Frankevich V,Martinez-Lozano Sinues P,Barylyuk K,Zenobi R.Anal.Chem.,2013,85(1):39-43
    10 Lubman D M,Kronick M N.Anal.Chem.,1982,54(9):1546-1551
    11 Tabrizchi M,Khayamian T,Taj N.Rev.Sci.Instrum.,2000,71(6):2321-2328
    12 Khayamian T,Jafari M T.Anal.Chem.,2007,79(8):3199-3205
    13 Jin Q,Duan Y,Olivares J A.Spectrochim.Acta B,1997,52(2):131-161
    14 Su Y,Duan Y,Jin Z.Anal.Chem.,2000,72(22):5600-5605
    15 Su Y,Duan Y,Jin Z.Anal.Chem.,2000,72(11):2455-2462
    16 Zhan X,Zhao Z,Yuan X,Wang Q,Li D,Xie H,Li X,Zhou M,Duan Y.Anal.Chem.,2013,85(9):4512-4519
    17 DAI Jian-Xiong,DUAN Yi-Xiang.Chinese J.Anal.Chem.,2016,44(11):1686-1691代渐雄,段忆翔.分析化学,2016,44(11):1686-1691
    18 Dai J,Zhao Z,Liang G,Duan Y.Sci.Rep.,2017,7:44051
    19 Spangler G E.Anal.Chem.,1993,65(21):3010-3014
    20 Zhao Z,Li D,Wang B,Ding X,Dai J,Yuan X,Li X,Duan Y.Int.J.Mass Spectrom.,2015,376:65-74
    21 Harling A M,Whitehead J C,Zhang K.J.Phys.Chem.A,2005,109(49):11255-11260
    22 Fitzsimmons C,Shawcross J T,Whitehead J C.J.Phys.D,1999,32(10):1136
    23 Nagato K,Matsui Y,Miyata T,Yamauchi T.Int.J.Mass Spectrom.,2006,248(3):142-147
    24 By E.Aspects of Explosives Detection,Amsterdam:Ed.Elsevier,2009:171-202
    25 Sabo M,Michalczuk B,LichvanováZ,Kavicky V,Radjenovic B,Matejcˇík珔S.Int.J.Mass Spectrom.,2015,380:12-20
    26 Atkinson R,Baulch D L,Cox R A,Jr R F H,Kerr J A,Rossi M J,Troe J.J.Phys.Chem.Ref.Data,1999,28(7):1187-1230
    27 Daum K A,Atkinson D A,Ewing R G.Int.J.Mass Spectrom.,2002,214(2):257-267
    28 Ewing R G,Atkinson D A,Eiceman G A,Ewing G J.Talanta,2001,54(3):515-529
    29 Rajapakse M Y,Stone J A,Eiceman G A.J.Phys.Chem.A,2014,118(15):2683-2692
    30 Kanu A B,Hill H H.Talanta,2007,73(4):692-699
    31 Filipenko A A,Malkin E K.J.Anal.Chem.,2011,66(14):1464-1469

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700