浅海Mg~(2+)和SO_4~(2-)对微生物诱导形成锰碳酸盐的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Mg~(2+) and SO_4~(2-) on Mn-Carbonate Mineralization Induced by Microorganisms in Shallow Seas
  • 作者:王霄 ; 李艳 ; 黎晏彰 ; 刘雨薇 ; 段鉴书 ; 丁竑瑞 ; 王长秋 ; 鲁安怀
  • 英文作者:Wang Xiao;Li Yan;Li Yanzhang;Liu Yuwei;Duan Jianshu;Ding Hongrui;Wang Changqiu;Lu Anhuai;Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University;
  • 关键词:水钠锰矿 ; 菱锰矿 ; 生物还原 ; 生物矿化 ; 环境地质
  • 英文关键词:birnessite;;rhodochrosite;;bioreduction;;biomineralization;;environmental geology
  • 中文刊名:DQKX
  • 英文刊名:Earth Science
  • 机构:造山带与地壳演化教育部重点实验室矿物环境功能北京市重点实验室北京大学地球与空间科学学院;
  • 出版日期:2018-09-15
  • 出版单位:地球科学
  • 年:2018
  • 期:v.43
  • 基金:国家自然科学基金重点项目(No.41230103);国家自然科学基金优青项目(No.41522201);; 国家重点基础研究“973”发展计划项目(No.2014CB846001)
  • 语种:中文;
  • 页:DQKX2018S1015
  • 页数:12
  • CN:S1
  • ISSN:42-1874/P
  • 分类号:149-160
摘要
为了模拟浅海环境下锰氧化物微生物还原作用诱导碳酸盐沉淀的过程,选取最常见的锰氧化物-水钠锰矿(K_(0.33)Mn_7O_(14)·7H_2O)为研究对象,在不同种类与浓度盐离子(Mg~(2+)、SO_4~(2-))存在条件下开展异化锰还原菌Dietzia cercidiphylli 45-1b好氧还原水钠锰矿的实验研究.通过测试体系蛋白、Mn~(2+)等离子浓度变化,利用X射线衍射(XRD)和X射线吸收谱(XAS)表征反应前后矿物结构变化,来探讨不同初始Mg~(2+)和SO_4~(2-)浓度对于菌株45-1b还原水钠锰矿及诱导碳酸盐矿物沉淀的影响.结果显示体系pH值在4天内从7.0迅速上升至9.3,Mn~(2+)浓度在2天内迅速上升至166μmol/L,随后迅速下降至8μmol/L(第4天),其好氧还原产物为菱锰矿(MnCO3),且其产生量随Mg~(2+)浓度的升高而降低,随SO_4~(2-)浓度的升高而升高.上述实验结果表明好氧环境下菌株45-1b能够利用乙酸为电子供体,水钠锰矿为电子受体还原水钠锰矿释放Mn~(2+),最终转化有机碳为无机碳酸盐矿物菱锰矿.Mg~(2+)通过影响微生物生长和菱锰矿成核对水钠锰矿的还原及菱锰矿沉淀产生抑制作用,而SO_4~(2-)可以缓解Mg~(2+)的抑制作用并促进水钠锰矿的还原及菱锰矿沉淀.
        In order to simulate bio-reduction of manganese oxides and coupled carbonate precipitation induced by microbes in shallow sea environments, we took one of the most common manganese oxides-birnessite(K_(0.33)Mn_7O_(14)·7H_2O) as an example and carried out experiments under different Mg~(2+)and SO_4~(2-)concentrations, where dissimilatory manganese-reducing bacteria Dietzia cercidiphylli 45-1 b reduced birnessite under aerobic conditions. By analyzing variations of the concentrations of protein, Mn~(2+), etc., alongside X-ray powder diffraction(XRD) and X-ray absorption spectroscopy(XAS) for mineralogical transformations analyses, we discussed the impact on birnessite reduction and carbonate precipitation by Strain 45-1 b under different initial concentrations of Mg~(2+)and SO_4~(2-). Results show that the pH in our experimental systems quickly increased from7.0 to 9.3 during the course of four days, and Mn~(2+)concentrations increased to 166 μmol/L in two days and rapidly decreased to 8 μmol/L on the fourth day with rhodochrosite(MnCO3) as reduction products under aerobic conditions.The production of rhodochrosite decreased with increasing Mg~(2+)concentrations and increased with rising SO_4~(2-)concentrations. These results indicate that Strain 45-1 b can utilize acetate as the electron donor and birnessite as the electron acceptor under aerobic conditions, causing birnessite reduction and Mn~(2+)releasing and ultimately conversing organic carbon into inorganic carbonate minerals as rhodochrosite. Mg~(2+)inhibited microbial growth and the presence of rhodochrosite nucleation sites to affect birnessite reduction and rhodochrosite precipitation, and SO_4~(2-)mitigated Mg~(2+)inhibition and promoted birnessite reduction and rhodochrosite precipitation.
引文
Banfield,M.J.,Salvucci,M.E.,Baker,E.N.,et al.,2001.Crystal Structure of the NADP(H)-Dependent Ketose Reductase from Bemisia Argentifolii,at 2.3?Resolution.Journal of Molecular Biology,306(2):239-250.https://doi.org/10.1006/jmbi.2000.4381
    Bao,Y.E.,1983.Effect of Temperature and Salinity in Coastal Area of Liaoning Province on Dissolved Oxygen Concentration in Seawater and Its Conversion.Marine Environmental Science,2(3):86-90(in Chinese).
    Borowitzka,M.A.,1982.Mechanisms in Algal Calcification.Progress in Phycological Research,1982:137-177.
    Bracco,J.N.,Grantham,M.C.,Stack,A.G.,2012.Calcite Growth Rates as a Function of Aqueous Calcium-to-Carbonate Ratio,Saturation Index,and Inhibitor Concentration:Insight into the Mechanism of Reaction and Poisoning by Strontium.Crystal Growth&Design,12(7):3540-3548.https://doi.org/10.1021/cg300350k
    Brewer,P.G.,Malby,G.,Pasteris,J.D.,et al.,2004.Development of a Laser Raman Spectrometer for Deep-Ocean Science.Deep Sea Research Part I Oceanographic Research Papers,51(5):739-753.https://doi.org/10.1016/j.dsr.2003.11.005
    Chang,Y.J.,Chang,Y.T.,Hung,C.H.,2008.The Use of Magnesium Peroxide for the Inhibition of Sulfate-Reducing Bacteria under Anoxic Conditions.Journal of Industrial Microbiology&Biotechnology,35(11):1481-1491.https://doi.org/10.1007/s10295-008-0450-6
    Cheng,K.M.,Hu,C.Q.,Liu,Y.N.,et al.,2005.Dietary Magnesium Requirement and Physiological Responses of Marine Shrimp Litopenaeus Vannamei,Reared in Low Salinity Water.Aquaculture Nutrition,11(5):385-393.https://doi.org/10.1111/j.1365-2095.2005.00364.x
    Duan,Y.,Yao,Y.C.,Qiu,X.,et al.,2017.Dolomite Formation Facilitated by Three Halophilic Archaea.Earth Science,42(3):389-396(in Chinese with English abstract).
    Falini,G.,Gazzano,M.,Ripamonti,A.,1994.Crystallization of Calcium Carbonate in Presence of Magnesium and Polyelectrolytes.Journal of Crystal Growth,137(3-4):577-584.https://doi.org/10.1016/0022-0248(94)91001-4
    Fernández-Díaz,L.,Putnis,A.,Prieto,M.,et al.,1996.The Role of Magnesium in the Crystallization of Calcite and Aragonite in a Porous Medium.Journal of Intercultural Studies,15(2):73-84.https://doi.org/10.1306/D4268388-2B26-11D7-8648000102C1865D
    Fischer,T.B.,Heaney,P.J.,Jang,J.H.,et al.,2008.Continuous Time-Resolved X-Ray Diffraction of the Biocatalyzed Reduction of Mn Oxide.American Mineralogist,93(11-12):1929-1932.https://doi.org/10.2138/am.2008.3038
    Folk,R.L.,1974.The Natural History of Crystalline Calcium Carbonate:Effect of Magnesium Content and Salinity.Journal of Sedimentary Petrology,44(1):40-53.https://doi.org/10.1306/74D72973-2B21-11D7-8648000102C1865D
    Gao,J.,Zheng,T.L.,Deng,Y.M.,et al.,2017.Indigenous IronReducing Bacteria and Their Impacts on Arsenic Release in Arsenic-Affected Aquifer in Jianghan Plain.Earth Science,42(5):716-726(in Chinese with English abstract).
    Grasby,S.E.,2003.Naturally Precipitating Vaterite(M-CaCO3)Spheres:Unusual Carbonates Formed in an Extreme Environment.Geochimica Et Cosmochimica Acta,67(9):1659-1666.https://doi.org/10.1016/S0016-7037(02)01304-2
    Huang,W.Q.,Di,W.U.,Yang,Y.,et al.,2013.Multi-Spectral Remote Sensing Water Depth Retrieval Technique in Shallow Sea.Ocean Technology,32(2):43-46(in Chinese with English abstract).
    Johnson,J.E.,Webb,S.M.,Thomas,K.,et al.,2013.ManganeseOxidizing Photosynthesis before the Rise of Cyanobacteria.Proceedings of the National Academy of Sciences of the United States of America,110(28):11238-11243.https://doi.org/10.1073/pnas.1305530110
    Land,L.S.,1985.The Origin of Massive Dolomite.Journal of Geological Education,33(2):112-125.https://doi.org/10.5408/0022-1368-33.2.112
    Larson,T.E.,Buswell,A.M.,Ludwig,H.F.,et al.,1942.Calcium Carbonate Saturation Index and Alkalinity Interpretations(Discussion).Journal(American Water Works Association),34(11):1667-1684.
    Liang,J.L.,Jiang,J.H.,Nie,Y.,et al.,2015.Regulation of the Alkane Hydroxylase CYP153 Gene in a Gram-Positive AlkaneDegrading Bacterium,Dietzia sp.Strain DQ12-45-1b.Applied&Environmental Microbiology,82(2):608.https://doi.org/10.1128/AEM.02811-15
    Lin,H.,Szeinbaum,N.H.,Dichristina,T.J.,et al.,2012.Microbial Mn(IV)Reduction Requires an Initial One-Electron Reductive Solubilization Step.Geochimica et Cosmochimica Acta,99(2):179-192.https://doi.org/10.1016/j.gca.2012.09.020
    Lovley,D.R.,Phillips,E.J.,1988.Novel Mode of Microbial Energy Metabolism:Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese.Applied&Environmental Microbiology,54(6):1472.
    McKenzie,R.M.,1971.The Synthesis of Birnessite,Cryptomelane,and Some Other Oxides and Hydroxides of Manganese.Mineralogical Magazine,38(296):493-502.https://doi.org/10.1180/minmag.1971.038.296.12
    Morse,J.W.,Wang,Q.,Tsio,M.Y.,1997.Influences of Temperature and Mg:Ca Ratio on CaCO3 Precipitates from Seawater.Geology,25(1):85-87.https://doi.org/10.1130/0091-7613(1997)0252.3.CO;2
    Nielsen,M.R.,Sand,K.K.,Rodriguezblanco,J.D.,et al.,2007.Inhibition of Calcite Growth:Combined Effects of Mg2+and SO2-4.Crystal Growth&Design,16(11):6199-6207.https://doi.org/10.1021/acs.cgd.6b00536
    Nishri,A.,Nissenbaum,A.,1993.Formation of Manganese Oxyhydroxides on the Dead Sea Coast by Alteration of Mn-Enriched Carbonates.Hydrobiologia,267(1-3):61-73.https://doi.org/110.1007/BF00018791
    Pedersen,T.F.,Price,N.B.,1982.The Geochemistry of Manganese Carbonate in Panama Basin Sediments.Geochimica Et Cosmochimica Acta,46(1):59-68.https://doi.org/10.1016/0016-7037(82)9 0290-3
    Rivadeneyra,M.A.,Delgado,G.,Soriano,M.,et al.,2000.Precipitation of Carbonates by Nesterenkonia Halobia in Liquid Media.Chemosphere,41(4):617-624.https://doi.org/10.1016/S0045-6535(99)00496-8
    Shen,X.Z.,Li,J.Q.,Liu,Z.C.,2006.Comparison Analysis the Content of Ca and Mg in Different Water.Contemporary Chemical Industry,35(3):230-232(in Chinese with English abstract).
    Shi,X.Y.,Zhang,C.H.,Jiang,G.Q.,et al.,2008.Microbial Mats in the Mesoproterozoic Carbonates of the North China Platform and Their Potential for Hydrocarbon Generation.Geoscience,22(5):669-682(in Chinese with English abstract).
    Wang,H.R.,2013.Experimental Study on the Reduction of Iron Minerals in Anaerobic Conditions(Dissertation).Peking University,Beijing(in Chinese with English abstract).
    Wang,J.,Qu,D.,2008.Effect of Sulfate as a Competitive Electron Receptor on Microbial Iron-Reduction Process.Acta Agriculturae Boreali-Occidentalis Sinica,17(6):315-321(in Chinese with English abstract).
    Wang,X.B.,Chi,C.Q.,Nie,Y.,et al.,2011.Degradation of Petroleum Hydrocarbons(C6-C40)and Crude Oil by a Novel Dietzia Strain.Bioresource Technology,102(17):7755-7761.https://doi.org/10.1016/j.biortech.2011.06.009
    Wright,D.T.,Wacey,D.,2005.Precipitation of Dolomite Using Sulphate-Reducing Bacteria from the Coorong Region,South Australia:Significance and Implications.Sedimentology,52(5):987-1008.https://doi.org/10.1016/10.1111/j.1365-3091.2005.00732.x
    Wu,H.Z,Fan,X.Y.,Zhou,H.L.,2011.Proliferation of Probiotics with Different Aerobic Characteristics under Aerobic and Anaerobic Conditions.Feed Research,6:30-32(in Chinese).
    Yang,B.,Cai,Z.X.,Zhao,W.G.,2009.Chemical Kinetics and Origin Model of Dolomite.Xinjiang Petroleum Geology,30(3):393-397(in Chinese with English abstract).
    Yang,H.,Wang,B.Q.,2012.Microbial Dolomite Models:An Overview.Marine Origin Petroleum Geology,17(2):1-7(in Chinese with English abstract).
    Zeng,Z.,Tice,M.M.,2014.Promotion and Nucleation of Carbonate Precipitation during Microbial Iron Reduction.Geobiology,12(4):362-371.https://doi.org/10.1111/gbi.12090
    Zhang,Y.,Zhao,Z.,Chen,C.T.A.,et al.,2012.Sulfur Metabolizing Microbes Dominate Microbial Communities in AndesiteHosted Shallow-Sea Hydrothermal Systems.Plos One,7(9):e44593.https://doi.org/10.1371/journal.pone.0044593
    Zhao,Y.Y.,Yan,M.C.,1992.Comparison of Abundances of Chemical Elements in the Sediments of the Yellow River,Yangtze River and Shallow Seas in China.Chinese Science Bulletin,37(13):1202-1204(in Chinese).
    Zhu,E.Q.,Wang,Q.,Zhang,J.H.,1985.Characteristics of Autogenous Fe-Mn Carbonate Minerals in Sanya Bay,Hainan Island.Chinese Science Bulletin,30(22):1738-1742(in Chinese).
    鲍永恩,1983.辽宁省沿海温、盐度对海水溶解氧浓度的影响和换算.海洋环境科学,2(3):86-90.
    段勇,药彦辰,邱轩,等,2017.三株嗜盐古菌诱导形成白云石.地球科学,42(3):389-396.
    高杰,郑天亮,邓娅敏,等,2017.江汉平原高砷地下水原位微生物的铁还原及其对砷释放的影响.地球科学,42(5),716-726.
    黄文骞,吴迪,杨杨,等,2013.浅海多光谱遥感水深反演技术.海洋技术学报,32(2):43-46.
    申湘忠,李家其,刘志成,2006.不同水质钙、镁含量的对比分析.当代化工,35(3):230-232.
    史晓颖,张传恒,蒋干清,等,2008.华北地台中元古代碳酸盐岩中的微生物成因构造及其生烃潜力.现代地质,22(5):669-682.
    王浩然,2013.厌氧条件下微生物还原含铁矿物实验研究(硕士学位论文).北京:北京大学.
    王静,曲东,2008.硫酸盐作为共存电子受体对微生物Fe(III)还原过程的影响.西北农业学报,17(6):315-321.
    吴红照,范小燕,周海丽,2011.不同好氧特性益生菌在有氧和无氧条件下的增殖.饲料研究,6:30-32.
    杨博,蔡忠贤,赵文光,2009.白云岩形成的化学动力学及其成因模式.新疆石油地质,30(3):393-397.
    杨华,王宝清,2012.微生物白云石模式评述.海相油气地质,17(2):1-7.
    赵一阳,鄢明才,1992.黄河、长江、中国浅海沉积物化学元素丰度比较.科学通报,37(13):1202-1204.
    朱而勤,王琦,张建华,1985.海南岛三亚湾内自生铁锰碳酸盐矿物的特征.科学通报,30(22):1738-1742.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700