Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments
  • 作者:程泂 ; 梁先庭 ; 张闻钊 ; 段香梅
  • 英文作者:Jiong Cheng;Xian-Ting Liang;Wen-Zhao Zhang;Xiangmei Duan;Department of Physics, Ningbo University;Beijing Computational Science Research Center (CSRC);
  • 英文关键词:optomechanical systems;;non-Markovian effect;;quantum state transfer
  • 中文刊名:ZGWL
  • 英文刊名:中国物理B
  • 机构:Department of Physics, Ningbo University;Beijing Computational Science Research Center (CSRC);
  • 出版日期:2018-12-15
  • 出版单位:Chinese Physics B
  • 年:2018
  • 期:v.27
  • 基金:Project supported by the National Natural Science Foundation of China(Grant Nos.11704205,11704026,21773131,and 11574167);; China Postdoctoral Science Foundation(Grant No.2018M632437);; the Natural Science Foundation of Ningbo City(Grant No.2018A610199);; K C Wong Magna Fund in Ningbo University,China
  • 语种:英文;
  • 页:ZGWL201812026
  • 页数:5
  • CN:12
  • ISSN:11-5639/O4
  • 分类号:181-185
摘要
The quantum state transfer between two membranes in coupled cavities is studied when the system is surrounded by non-Markovian environments. An analytical approach for describing non-Markovian memory effects that impact on the state transfer between distant membranes is presented. We show that quantum state transfer can be implemented with high efficiency by utilizing the experimental spectral density, and the performance of state transfer in non-Markovian environments is much better than that in Markovian environments, especially when the tunneling strength between the two cavities is not very large.
        The quantum state transfer between two membranes in coupled cavities is studied when the system is surrounded by non-Markovian environments. An analytical approach for describing non-Markovian memory effects that impact on the state transfer between distant membranes is presented. We show that quantum state transfer can be implemented with high efficiency by utilizing the experimental spectral density, and the performance of state transfer in non-Markovian environments is much better than that in Markovian environments, especially when the tunneling strength between the two cavities is not very large.
引文
[1] Zhou L, Han Y, Jing J and Zhang W 2011 Phys. Rev. A 83 052117
    [2] Lu X Y, Wu Y, Johansson J R, Jing H, Zhang J and Nori F 2015 Phys.Rev. Lett. 114 093602
    [3] Wang M, Lu X Y, Wang Y D, You J Q and Wu Y 2016 Phys. Rev. A 94053807
    [4] Lu X Y, Zhu G L, Zheng L L and Wu Y 2018 Phys. Rev. A 97 033807
    [5] Zoller P, Beth Th, Binosi D, et al. 2005 Eur. Phys. J. D 36 203
    [6] Marquardt F and Girvin S M 2009 Physics 2 40
    [7] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys.86 1391
    [8] Tian L and Wang H 2010 Phys. Rev. A 82 053806
    [9] Safavi-Naeini A H and Painter O 2011 New J. Phys. 13 013017
    [10] Nielsen M A and Chuang I I 2010 Quantum Computation and Quantum Information(Cambridge:Cambridge University Press)
    [11] Chang D E, Safavi-Naeini A H, Hafezi M and Painter O 2011 New J.Phys. 13 023003
    [12] Schmidt M, Ludwig M and Marquardt F 2012 New J. Phys. 14 125005
    [13] Tian L 2012 Phys. Rev. Lett. 108 153604
    [14] Wang Y D and Clerk A A 2012 New J. Phys. 14 105010
    [15] Wang Y D and Clerk A A 2012 Phys. Rev. Lett. 108 153603
    [16] Palomaki T A, Harlow J W, Teufel J D, Simmonds R W and Lehnert K W 2013 Nature 495 210
    [17] Pei P, Huang H F, Guo Y Q, Zhang X Y and Dai J F 2018 Chin. Phys.B 27 024203
    [18] Yousif T, Zhou W and Zhou L 2014 J. Mod. Opt. 61 1180
    [19] Rao S, Hu X, Li L and Xu J 2015 J. Phys. B:At. Mol. Opt. Phys. 48185501
    [20] de Moraes Neto G D, Andrade F M, Montenegro V and Bose S 2016Phys. Rev. A 93 062339
    [21] Giovannetti V and Vitali D 2001 Phys. Rev. A 63 023812
    [22] Grroblacher S, Trubarov A, Prigge N, Cole G D, Aspelmeyer M and Eisert J 2015 Nat. Commun. 6 7606
    [23] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems(Oxford:Oxford University Press)
    [24] Cheng J, Zhang W Z, Han Y and Zhou L 2016 Sci. Rep. 6 23678
    [25] Mu Q, Zhao X and Yu T 2016 Phys. Rev. A 94 012334
    [26] Triana J F, Estrada A F and Pach′on L A 2016 Phys. Rev. Lett. 116183602
    [27] Zhang W Z, Cheng J, Li W D and Zhou L 2016 Phys. Rev. A 93 063853
    [28] Zhang W Z, Han Y, Xiong B and Zhou L 2017 New J. Phys. 19 083022
    [29] Song J, Li C, Xia Y, Zhang Z J and Jiang Y Y 2017 J. Phys. B:At. Mol.Opt. Phys. 50 175502
    [30] Li Y L and Fang M F 2011 Chin. Phys. B 20 100312
    [31] Zhang W M, Lo P Y, Xiong H N, Tu M W Y and Nori F 2012 Phys.Rev. Lett. 109 170402
    [32] Ciccarello F 2015 Phys. Rev. A 91 062121
    [33] Cresser J D 1992 J. Mod. Opt. 39 2187
    [34] Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
    [35] Weiss U 2008 Quantum Dissipative Systems, 3rd edn.(Singapore:World Scientific Press)
    [36] Schwinger J 1961 J. Math. Phys. 2 407
    [37] Keldysh L V 1965 Sov. Phys. JETP 20 1018
    [38] Jahne K, Yurke B and Gavish U 2007 Phys. Rev. A 75 010301
    [39] Sete E A and Eleuch H 2015 Phys. Rev. A 91 032309
    [40] Xiong H N, Zhang W M and Tu M W Y 2012 Phys. Rev. A 86 032107
    [41] Scully M O and Zubairy M S 1997 Quantum Optics(Canbridge:Canbridge University Press)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700