散射技术在多酸溶液研究中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The application of scattering technology in the study of polyoxometalate solutions
  • 作者:郑昭 ; 赖钰 ; 张明鑫 ; 李牧 ; 陈坤 ; 盼超
  • 英文作者:Zhao Zheng;Yuyan Lai;Mingxin Zhang;Mu Li;Kun Chen;Panchao Yin;South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology;State Key Laboratory of Luminescent Materials and Devices, South China University of Technology;
  • 关键词:多金属氧酸盐 ; 溶液 ; 光散射 ; 小角X光散射 ; 小角中子散射
  • 英文关键词:polyoxometalate;;solution;;laser light scattering;;small angle X-ray scattering;;small angle neutron scattering
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:华南理工大学华南软物质科学与技术高等研究院;华南理工大学发光材料与器件国家重点实验室;
  • 出版日期:2018-08-21 13:44
  • 出版单位:科学通报
  • 年:2018
  • 期:v.63
  • 基金:中组部“千人计划”青年项目;; 广东省“珠江人才计划”引进创新创业团队基金(2016ZT06C322)资助
  • 语种:中文;
  • 页:KXTB201832006
  • 页数:20
  • CN:32
  • ISSN:11-1784/N
  • 分类号:59-78
摘要
多金属氧酸盐(即多酸)是一大类主要由金属-氧多面体连接构成、结构明确、大小在纳米级(尺寸从1~10nm)的分子簇.多酸因为其丰富的组成与结构,在催化、光电材料、单分子磁体、质子导体、磁性材料、生物材料等领域有着非常广泛的应用.但是如何设计与合成具有特定结构和功能的多酸分子簇,是多酸化学家面临的一个难题,需要对多酸的溶液行为进行深入的研究.随着表征技术的发展,人们利用各种信号源,例如,微波、(近)红外、可见光、紫外光、X射线和中子,发展而来的散射技术在研究材料的结构和动力学方面有着非常重要的应用.本文同时介绍了激光光散射技术(LLS)、小角X射线散射技术(SAXS)和小角中子散射技术(SANS)在多酸溶液研究中的应用,为研究多酸在溶液中的自组装行为、自识别行为、形貌结构、形成机理、反离子分布、分子间相互作用、受限小分子动态行为等提供强有力的技术支持.这些多酸结构与动态行为相关方向的探索对于发展新型多酸的合成方法以及优化多酸的功能具有重要的指导意义.
        Polyoxometalates(POMs), a large group of well-defined nanoclusters, are formed by linking early-transition-metal oxide polyhedrons through shared corners, edges and planes. POMs are widely used in various fields, such as catalysis, single molecular magnets, photoelectric materials, proton conductors, magnetic materials, and biomaterials, due to their abundant compositions and structures. However, how to design and synthesize POMs with specific structure and function remains a challenge for researchers. In-depth studies of POMs' solution behavior are required to solve this problem. Scattering techniques, using microwaves,(near)infrared, visible light, ultraviolet light, X-rays, and neutrons as probe, are employed to investigate the structure and dynamics of materials. By detecting the interactions between the probe and the particles, physical properties, such as particle size, shape and internal structure, can be determined. This article focuses on the application of laser light scattering(LLS), small angle X-ray scattering(SAXS), and small angle neutron scattering(SANS) in the study of polyoxometalate solutions. By LLS, researchers discovered the self-assembly of POM macroanions, for example, researchers find the supramolecular blackberry structure formed by {Mo_(154)} macroions in aqueous solution. Meanwhile the self-assembly processes and the self-recognition behaviors were determined, in mixed dilute aqueous solutions, the clusters {Mo_(72)Fe_(30)} and {Mo_(72)Cr_(30)} self-assemble into different "blackberry" structures of the Cr_(30) and Fe_(30) type. SAXS are employed to study POMs' morphology and solution behavior, determine the counterion distribution around POMs in solutions, and probe the interactions among POMs in solutions. The effect of Rb+ on the assembly process, and the effect of solvent polarity on the assembly process, all of these can determined by SAXS. Moreover, the kinetic behaviors of confined hydrogen atoms in POMs and the morphology of POMs in hybrid materials can be obtained through SANS. Researchers study the difference between the mean square displacement measured in fully hydrogenated and partially deuterated {Mo_(72)V_(30)} by SANS. These studies are instructive to the design of POMs' structure and function. However, there are still many basic problems of POM need to be solved. For example, the correlation between structure and properties of POM. And in the preparation of POM, how do the reducing agent, pH and catalyst work? Solving these basic issues requires numerous chemists' effort. Scattering techniques play a key role in the study of polyoxometalate solutions since the structure and morphology information of nanoscale molecules can be obtained. With its unique advantages, scattering techniques will promote the development of POM.
引文
1 Fielden J,Cronin L.Coordination clusters.In:Atwood J L,Steed J W,ed.Encyclopedia of Supramolecular Chemistry.:Taylor&Francis,2005
    2 Jadzinsky P D,Calero G,Ackerson C J,et al.Structure of a thiol monolayer-protected gold nanoparticle at 1.1?resolution.Science,2007,318:430-433
    3 Takeda N,Umemoto K,Yamaguchi K,et al.A nanometre-sized hexahedral coordination capsule assembled from 24 components.Nature,1999,398:794-796
    4 Tomalia D A,Baker H,Dewald J,et al.A new class of polymers:Starburst-dendritic macromolecules.Polym J,1985,17:117-132
    5 Tomalia D A,Frechet J M.Introduction to the dendritic state.In:Tomalia D A,Freshet J M,eds.Dendrimers and Other Dendritic Polymers.New York:John Wiley&Sons,Ltd.,2002
    6 Tomalia D A.Birth of a new macromolecular architecture:dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry.Prog Polym Sci,2005,30:294-324
    7 Caruso F,Kurth D G,Volkmer D,et al.Ultrathin molybdenum polyoxometalate-polyelectrolyte multilayer films.Langmuir,1998,14:3462-5
    8 Cronin L,Müller A.From serendipity to design of polyoxometalates at the nanoscale,aesthetic beauty and applications.Chem Soc Rev,2012,41:7333-7334
    9 Müller A,K?gerler P.From simple building blocks to structures with increasing size and complexity.Coord Chem Rev,1999,182:3-17
    10 Müller A,K?gerler P,Dress A W M.Giant metal-oxide-based spheres and their topology:From pentagonal building blocks to keplerates and unusual spin systems.Coord Chem Rev,2001,222:193-218
    11 Müller A,Gouzerh P.From linking of metal-oxide building blocks in a dynamic library to giant clusters with unique properties and towards adaptive chemistry.Chem Soc Rev,2012,41:7431-7463
    12 Clemente-Juan J M,Coronado E,Gaita-Arino A.Magnetic polyoxometalates:From molecular magnetism to molecular spintronics and quantum computing J.Chem Soc Rev,2012,41:7464-7478
    13 Lv H,Geletii Y V,Zhao C,et al.Polyoxometalate water oxidation catalysts and the production of green fuel.Chem Soc Rev,2012,41:7572-7589
    14 Palilis L C,Vasilopoulou M,Douvas A M,et al.Solution processable tungsten polyoxometalate as highly effective cathode interlayer for improved efficiency and stability polymer solar cells.Sol Energy Mat Sol C,2013,114:205-213
    15 Pope M T,Müller A.Polyoxometalates:From Platonic Solids to Anti-Retroviral Activity.Netherlands:Springer,1994
    16 Song Y F,Tsunashima R.Recent advances on polyoxometalate-based molecular and composite materials.Chem Soc Rev,2012,41:7384-7402
    17 Toma F M,Sartorel A,Iurlo M,et al.Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces.Nat Chem,2010,2:826-831
    18 Wang S S,Yang G Y.Recent advances in polyoxometalate-catalyzed reactions.Chem Rev,2015,115:4893-4962
    19 Wang Y,Weinstock I A.Polyoxometalate-decorated nanoparticles.Chem Soc Rev,2012,41:7479-7496
    20 Yin P,Li D,Liu T.Solution behaviors and self-assembly of polyoxometalates as models of macroions and amphiphilic polyoxometalate-organic hybrids as novel surfactants.Chem Soc Rev,2012,41:7368-7383
    21 Liu T.Hydrophilic Macroionic Solutions:What happens when soluble ions reach the size of nanometer scale?Langmuir,2010,26:9202-9213
    22 Fullmer L B,Molina P I,Antonio M R,et al.Contrasting ion-association behaviour of Ta and Nb polyoxometalates.Dalton Trans,2014,43:15295-15299
    23 Haso F,Yang P,Gao Y,et al.Exploring the effect of surface functionality on theself-assembly of polyoxopalladate macroions.Chem Eur J,2015,21:9048-9052
    24 Kistler M L,Bhatt A,Liu G,et al.A complete macroion-“blackberry”assembly-macroion transition with continuously adjustable assembly sizes in{Mo132}water/acetone systems.J Am Chem Soc,2007,129:6453-6460
    25 Nakamura I,Miras H N,Fujiwara A,et al.Investigating the formation of“molybdenum blues”with gel electrophoresis and mass spectrometry.J Am Chem Soc,2015,137:6524-6530
    26 Pigga J M,Teprovich J A,Flowers R A,et al.Selective monovalent cation association and exchange around Keplerate polyoxometalate macroanions in dilute aqueous solutions.Langmuir,2010,26:9449-9456
    27 Robbins P J,Surman A J,Thiel J,et al.Use of ion-mobility mass spectrometry(IMS-MS)to map polyoxometalate Keplerate clusters and their supramolecular assemblies.Chem Commun,2013,49:1909-1911
    28 Yin P,Bayaguud A,Cheng P,et al.Spontaneous stepwise self-assembly of a polyoxometalate-organic hybrid into catalytically active one-dimensional anisotropic structures.Chem Eur J,2014,20:9589-9595
    29 Yin P,Li T,Forgan R S,et al.Exploring the programmable assembly of a polyoxometalate-organic hybrid via metal ion coordination.JAm Chem Soc,2013,135:13425-13432
    30 Yin P,Li D,Liu T.Counterion interaction and association in metal-oxide cluster macroanionic solutions and the consequent self-assembly.Isr J Chem,2011,51:191-204
    31 Chu B,Zhou Z.Scattering techniques applied to food systems:Light scattering and small angle X-ray scattering.In:New Techniques and Applications of Physical Chemistry to Food Systems.New York:Van Nostrand Reinhold,1993.245
    32 Wu D Q,Chu B,Lundberg R D,et al.Small-angle X-ray scattering(SAXS)studies of sulfonated polystyrene ionomers.2.Correlation function analysis.Macromolecules,1993,26:1000-1007
    33 Yin P,Lin Z,Wu J,et al.Charge-regulated spontaneous,reversible self-assembly of the carboxylic acid-functionalized hydrophilic fullerene macroanions in dilute solution.Macromolecules,2015,48:725-731
    34 Glatter O,Kratky O.Small Angle X-ray Scattering.London:Academic Press,1982
    35 Provencher S W.A Fourier method for the analysis of exponential decay curve.Biophys J,1976,16:27-41
    36 Zemb T,Lindner P.Neutrons,X-rays and Light:Scattering Methods Applied to Soft Condensed Matter.Amsterdam:Elsevier,2002
    37 Liu T,Diemann E,Li H,et al.Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles.Nature,2003,426:59-62
    38 Muller A,Diemann E,Kuhlmann C,et al.Hierarchic patterning:Architectures beyond“giant molecular wheels”.Chem Commun,2001,19:1928-1929
    39 Chen B,Jiang H,Zhu Y,et al.Monitoring the growth of polyoxomolybdate nanoparticles in suspension by flow field-flow fractionation.J Am Chem Soc,2005,127:4166-4167
    40 Zhang J,Keita B,Nadjo L,et al.Self-assembly of polyoxometalate macroanion-capped Pd0 nanoparticles in aqueous solution.Langmuir,2008,24:5277-5283
    41 Zhu Y,Cammers-Goodwin A,Zhao B,et al.Kinetic precipitation of solution-phase polyoxomolybdate followed by transmission electron microscopy:A window to solution-phase nanostructure.Chem Eur J,2004,10:2421-2427
    42 Liu G,Cai Y,Liu T.Automatic and subsequent dissolution and precipitation process in inorganic macroionic solutions.J Am Chem Soc,2004,126:16690-16691
    43 Liu G,Kistler M L,Li T,et al.Counter-ion association effect in dilute giant polyoxometalate AsIII12CeIII16(H2O)36W148O52476-({W148})and Mo132O372(CH3COO)30(H2O)7242-({Mo132})macroanionic solutions.J Cluster Sci,2006,17:427-443
    44 Liu T.Supramolecular structures of polyoxomolybdate-based giant molecules in aqueous solution.J Am Chem Soc,2002,124:10942-10943
    45 Liu T.An unusually slow self-assembly of inorganic ions in dilute aqueous solution.J Am Chem Soc,2003,125:312-313
    46 Liu G,Liu T,Mal S S,et al.Wheel-shaped polyoxotungstate Cu20Cl(OH)24(H2O)12(P8W48O184)25-macroanions form supramolecular“blackberry”structure in aqueous solution.J Am Chem Soc,2006,128:10103-10110
    47 Zhang J,Li D,Liu G,et al.Lag periods during the self-assembly of{Mo72Fe30}macroions:Connection to the virus capsid formation process.J Am Chem Soc,2009,131:15152-15159
    48 Liu G,Liu T.Thermodynamic properties of the unique self-assembly of{Mo72Fe30}inorganic macro-ions in salt-free and salt-containing aqueous solutions.Langmuir,2005,21:2713-2720
    49 Zlotnick A,Johnson J M,Wingfield P W,et al.A theoretical model successfully identifies features of hepatitis B virus capsid assembly.Biochemistry,1999,38:14644-14652
    50 Liu T,Langston M L,Li D,et al.Self-recognition among different polyprotic macroions during assembly processes in dilute solution.Science,2011,331:1590-1592
    51 Casini G L,Graham D,Heine D,et al.In vitro papillomavirus capsid assembly analyzed by light scattering.Virology,2004,325:320-327
    52 Liu T,Imber B,Diemann E,et al.Deprotonations and charges of well-defined{Mo72Fe30}nanoacids simply stepwise tuned by pH allow control/variation of related self-assembly processes.J Am Chem Soc,2006,128:15914-15920
    53 Kistler M L,Liu T,Gouzerh P,et al.Molybdenum-oxide based unique polyprotic nanoacids showing different deprotonations and related assembly processes in solution.Dalton Trans,2009,26:5094-5100
    54 Kistler M L,Patel K G,Liu T.Accurately tuning the charge on giant polyoxometalate type Keplerates through stoichiometric interaction with cationic surfactants.Langmuir,2009,25:7328-7334
    55 Ribot F,Escax V,Martins J C,et al.Probing ionic association on metal oxide clusters by pulsed field gradient NMR spectroscopy:The example of Sn12-oxo clusters.Chemistry,2004,10:1747-1751
    56 Van Lokeren L,Willem R,van der Beek D,et al.Probing the anions mediated associative behavior of tin-12 oxo-macrocations by pulsed field gradient NMR spectroscopy.J Phys Chem C,2010,114:16087-16091
    57 Yin P,Wu B,Li T,et al.Reduction-triggered self-assembly of nanoscale molybdenum oxide molecular clusters.J Am Chem Soc,2016,138:10623-10629
    58 Yin P,Wu B,Mamontov E,et al.X-ray and neutron scattering study of the formation of core-shell-type polyoxometalates.J Am Chem Soc,2016,138:2638-2643
    59 Jackson M N,Kamunde-Devonish M K,Hammann B A,et al.An overview of selected current approaches to the characterization of aqueous inorganic clusters.Dalton Trans,2015,44:16982-17006
    60 Qiu J,Dembowski M,Szymanowski J E S,et al.Time-resolved X-ray scattering and Raman spectroscopic studies of formation of a uranium-vanadium-phosphorus-peroxide cage cluster.Inorg Chem,2016,55:7061-7067
    61 Dembowski M,Colla C A,Hickam S,et al.Hierarchy of pyrophosphate-functionalized uranyl peroxide nanocluster synthesis J.Inorg Chem,2017,56:5478-5487
    62 Dembowski M,Colla C A,Yu P,et al.The propensity of uranium-peroxide systems to preserve nanosized assemblies J.Inorg Chem,2017,56:9602-9608
    63 Nyman M.Small-angle X-ray scattering to determine solution speciation of metal-oxo clusters.Coord Chem Rev,2017,352:461-742
    64 Antonio M R,Nyman M,Anderson T M.Direct observation of contact ion-pair formation in aqueous solution.Angew Chem Int Ed,2009,48:6136-6140
    65 Bera M K,Antonio M R.Crystallization of keggin heteropolyanions via a two-step process in aqueous solutions.J Am Chem Soc,2016,138:7282-7288
    66 Bera M K,Ellis R J,Burton-Pye B P,et al.Structural aspects of heteropolyacid microemulsions.Phys Chem Chem Phys,2014,16:22566-22574
    67 Demars T J,Bera M K,Seifert S,et al.Revisiting the solution structure of ceric ammonium nitrate.Angew Chem Int Ed,2015,54:7534-7538
    68 Pigga J M,Kistler M L,Shew C Y,et al.Counterion distribution around hydrophilic molecular macroanions:The source of the attractive force in self-assembly.Angew Chem Int Ed,2009,48:6538-6542
    69 Fullmer L B,Malmberg C E,Fast D B,et al.Aqueous tantalum polyoxometalate reactivity with peroxide.Dalton Trans,2017,46:8486-8493
    70 Antonio M R,Chiang M H,Seifert S,et al.In situ measurement of the Preyssler polyoxometalate morphology upon electrochemical redchemristryuction:A redox system with Born electrostatic ion solvation behavior.J Electroanal Chem,2009,626:103-110
    71 Goberna-Ferrón S,Soriano-López J,Galán-Mascarós J R,et al.Solution speciation and stability of cobalt-polyoxometalate water oxidation catalysts by X-ray scattering.Eur J Inorg Chem,2015,2015:2833-2840
    72 Hou Y,Zakharov L N,Nyman M.Observing assembly of complex inorganic materials from polyoxometalate building blocks.J Am Chem Soc,2013,135:16651-16657
    73 Falaise C,Neal H A,Nyman M.U(IV)aqueous speciation from the monomer to UO2 nanoparticles:Two levels of control from zwitterionic glycine ligands.Inorg Chem,2017,56:6591-6598
    74 Falaise C,Nyman M.The key role of U-28 in the aqueous self-assembly of uranyl peroxide nanocages.Chem Eur J,2016,22:14678-14687
    75 Goberna-Ferron S,Park D H,Amador J M,et al.Amphoteric aqueous hafnium cluster chemistry.Angew Chem Int Ed,2016,55:6221-6224
    76 Izzet G,Abecassis B,Brouri D,et al.Hierarchical self-assembly of polyoxometalate-based hybrids driven by metal coordination and electrostatic interactions:From discrete supramolecular species to dense monodisperse nanoparticles.J Am Chem Soc,2016,138:5093-5099
    77 Ling J,Qiu J,Burns P C.Uranyl peroxide oxalate cage and core-shell clusters containing 50 and 120 uranyl ions.Inorg Chem,2012,51:2403-2408
    78 Qiu J,Ling J,Jouffret L,et al.Water-soluble multi-cage super tetrahedral uranyl peroxide phosphate clusters.Chem Sci,2014,5:303-310
    79 Qiu J,Nguyen K,Jouffret L,et al.Time-resolved assembly of chiral uranyl peroxo cage clusters containing belts of polyhedra.Inorg Chem,2013,52:337-345
    80 Qiu J,Spano T L,Dembowski M,et al.Sulfate-centered sodium-lcosahedron-templated uranyl peroxide phosphate cages with uranyl bridged byμ-η1:η2 peroxide.Inorg Chem,2017,56:1874-1880
    81 Renier O,Falaise C,Neal H,et al.Closing uranyl polyoxometalate capsules with bismuth and lead polyoxocations.Angew Chem Int Ed,2016,55:13480-13484
    82 Wylie E M,Peruski K M,Weidman J L,et al.Ultrafiltration of uranyl peroxide nanoclusters for the separation of uranium from aqueous solution.ACS Appl Mater Interfaces,2014,6:473-479
    83 Svergun D I.A direct indirect method of small-angle scattering data treatment.J Appl Crystallogr,1993,26:258-267
    84 Svergun D,Barberato C,Koch M H J.CRYSOL.A program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates.J Appl Crystallogr,1995,28:768-773
    85 Li M,Wang W,Yin P.A general approach to access morphologies of polyoxometalates in solution by using SAXS:An ab initio modeling protocol.Chem Eur J,2018,24:6639-6644
    86 Gao J B,Zhang Y N,Jia G Q,et al.A direct imaging of amphiphilic catalysts assembled at the interface of emulsion droplets using fluorescence microscopy.Chem Commun,2008,3:332-334
    87 Rickert P G,Antonio M R,Firestone M A,et al.Tetraalkylphosphonium polyoxometalate ionic liquids:Novel,organic-inorganic hybrid materials.J Phys Chem B,2007,111:4685-4692
    88 Wang Y L,Li W,Wu L X.Organic-inorganic hybrid supramolecular gels of surfactant-encapsulated polyoxometalates.Langmuir,2009,25:13194-13200
    89 Müller A,Peters F,Pope M T,et al.Polyoxometalates:Very large clusters-nanoscale magnets.Chem Rev,1998,98:239-271
    90 Liu Z,Liu T,Tsige M.Elucidating the origin of the attractive force among hydrophilic macroions.Sci Rep,2016,6:26595
    91 Sztucki M,Di Cola E,Narayanan T.Anomalous small-angle X-ray scattering from charged soft matter.Eur Phys J,2012,208:319-331
    92 Kratky O,Porod G.Diffuse small-angle scattering of X-rays in colloid systems.J Colloid Sci,1949,4:35-70
    93 Kratky O.X-Ray small angle scattering with substances of biological interest in diluted solutions.Prog Biophys Mol Biol,1963,13:105-173
    94 Bera M K,Qiao B,Seifert S,et al.Aggregation of heteropolyanions in aqueous solutions exhibiting short-range attractions and long-range repulsions.J Phys Chem C,2015,120:1317-1327
    95 Wang Z,Daemen L L,Cheng Y,et al.Nanoconfinement inside molecular metal oxide clusters:Dynamics and modified encapsulation behavior.Chemistry,2016,22:14131-14136
    96 Faraone A,Fratini E,Garai S,et al.Incoherent quasielastic neutron scattering study of the relaxation dynamics in molybdenum-oxide Keplerate-type nanocages.J Phys Chem C,2014,118:13300-13312
    97 Faraone A,Fratini E,Todea A M,et al.Dynamics of water in voids between well-defined and densely packed spherical nanocages acting as polyprotic inorganic acids.J Phys Chem C,2009,113:8635-8644
    98 Buchecker T,Le Goff X,Naskar B,et al.Polyoxometalate/polyethylene glycol interactions in water:From nanoassemblies in water to crystal formation by electrostatic screening.Chemistry,2017,23:8434-8442

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700