蓖麻枯萎病抗性的QTL定位分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mapping QTLs conferring resistance to Fusarium wilt in castor (Ricinus communis L.)
  • 作者:陈森 ; 陆建农 ; 施玉珍 ; 汪亚菲 ; 王亚如 ; 何展泳 ; 殷学贵
  • 英文作者:CHEN Sen;LU Jian-nong;SHI Yu-zhen;WANG Ya-fei;WANG Ya-ru;HE Zhan-yong;YIN Xue-gui;Guangdong Ocean University;
  • 关键词:蓖麻 ; 枯萎病 ; 抗性 ; 动态QTL定位
  • 英文关键词:Ricinus communis L.;;Fusarium wilt;;resistance;;dynamic QTL mapping
  • 中文刊名:ZGYW
  • 英文刊名:Chinese Journal of Oil Crop Sciences
  • 机构:广东海洋大学;
  • 出版日期:2019-02-15
  • 出版单位:中国油料作物学报
  • 年:2019
  • 期:v.41;No.173
  • 基金:国家自然科学基金(31271759);; 广东省科技计划项目(2013B060400024,2014A020208116,2016A020208015);; 广东海洋大学创新强校工程项目(GDOU2013050206)
  • 语种:中文;
  • 页:ZGYW201901004
  • 页数:7
  • CN:01
  • ISSN:42-1429/S
  • 分类号:22-28
摘要
本研究用YC2×YF1抗、感组合的F2群体在两个环境中对蓖麻枯萎病抗性进行了QTL定位。遗传分析表明,群体中枯萎病抗性呈连续性偏态分布,后代表型偏抗性亲本。2014年检测到5个QTL,解释了总变异的18. 21%,单位点贡献率为0. 05%~12. 32%。2015年分别在出苗后20d、30d、40d、现蕾期和乳熟期进行了动态定位,分别检测出4、12、13、4和1个QTL,单位点贡献率为1. 64%~21. 91%,5个发育时期检出的QTL主要集中在第3、4和8连锁群上。有1个QTL在4个时期、3个QTL在3个时期、6个QTL在2个时期被重复检测到。在第8连锁群上一个QTL在两个环境同一时期被重复检测到。以上结果可为蓖麻抗枯萎病分子标记辅助选择提供参考。
        In this study,the QTLs conferring the resistance to Fusarium wilt were mapped with the F2 populations derived from YC2 × YF1 resistant and susceptible combination under 2 environments in castor. Genetic analysis presented a continuous skewness distribution in populations,tending to resistant parent. 5 QTLs were identified in 2014,explained 18. 21% of phenotype variation,with a single locus contribution rate of 0. 05%-12. 32%.Dynamic mapping was performed at 5 stages including 20 d,30 d,40 d after seedling,squaring stage and milk ripening period in 2015,and 4,12,13,4 and 1 QTLs were detected respectively,with a single locus contribution rate of 1. 64%-21. 91%. 1,3 and 6 QTLs were identified simultaneously at 4,3 and 2 stages respectively. The detected QTLs at these 5 stages were mainly concentrated on linkage group 3,4 and 8. One QTL located on linkage group 8 was detected simultaneously in both environments at the same stage. The above results could facilitate the molecular marker assisted selection of Fusarium wilt resistance in castor.
引文
[1] Severino L S,Auld D L,Baldanzi M,et al. A review onthe challenges for increased production of castor[J].Agron J,2012,104(4):853-880.
    [2] Anjani K. Pattern of genetic diversity among Fusariumwilt resistant castor germplasm accessions(Ricinus com-munis L.)[J]. Electronic Plant Breeding,2010,1(2):182-187.
    [3] Kumar M V N,Shankar V G,Ramya V,et al. Enhancingcastor(Ricinus communis L.)productivity through genet-ic improvement for Fusarium wilt resistance-a review[J]. Ind Crops Prod,2015,67:330-335.
    [4] Shankar V G,Rao P V R,Reddy A V. Inheritance ofcertain morphological characters and Fusarium wilt resist-ance in castor,Ricinus communis L.[J]. Sabrao J Breed-ing Genetics,2010,42(2):57-64.
    [5] Kammili A,Raoof M A. Analysis of mode of inheritanceof Fusarium wilt resistance in castor(Ricinus communisL.)[J]. Plant Breeding,2013,133(1):101-107.
    [6] Lavanya C,Raoof M A,Prasad M S L. Genetics of re-sistance to Fusarium wilt in castor caused by Fusariumoxysporumf. sp. ricini.[J]. Ind Phytopathol,2011,64(2):151-153.
    [7] Patel P B,Pathak H C. Genetics of resistance to wilt incastor caused by Fusarium oxysporum f. sp. ricini Nandaand Prasad.[J]. Agr Sci Digest,2011,31(1):30-34.
    [8] Singh M. Development of RAPD markers linked to Fusar-ium wilt resistance gene in castor bean(Ricinus communisL.).[J]. Genet Eng Biotechnol J,2011,28(57):1-10.
    [9] Reddy N R,Sujatha M,Reddy A V,et al. Inheritanceand molecular mapping of wilt resistance gene(s)in cas-tor(Ricinus communis L.)[J]. Int J Plant Breeding,2011,5(2):84-87.
    [10] Tomar R S,Parakhia M V,Thakkar J R,et al. Devel-opment of linkage map and identification of QTLs re-sponsible for Fusarium wilt resistance in castor(Ricinuscommunis L.)[J]. Res J Biotechnol,2016,10(5):67-73.
    [11]戴高兴,邓国富,张迎信,等.作物动态QTL研究进展[J].中国稻米,2012,18(4):22-25.
    [12] Yan J Q,Zhu J,He C X,et al. Quantitative trait locianalysis for the developmental behavior of tiller numberin rice(Oryza sativa L.)[J]. Theor Appl Genet,1998,97(1-2):267-274.
    [13] Cao G Q,Zhu J,Conditional genetic analysis on quanti-tative trait loci for yield and its components in rice[J].Life Sci,2006,4(1):71-76.
    [14]严建兵,汤华,黄益勤,等.不同发育时期玉米株高QTL的动态分析[J].科学通报,2003,48(18):1 959-1 964.
    [15] Sun D,Li W,Zhang Z,et al. Quantitative trait loci a-nalysis for the developmental behavior of Soybean(Gly-cine max L. Merr.)[J]. Theor Appl Genet,2006,112(4):665-673.
    [16]刘伟,冷廷瑞,张云万,等.蓖麻枯萎病研究初探[J].吉林农业科学,2009,34(1):27-28.
    [17] Murray M G,Thompson W F. Rapid isolation of highmolecular weight plant DNA[J]. Nucl Acids Res,1980,8(19):4 321-4 325.
    [18] Meng L,Li H,Zhang L,et al. QTL Ici Mapping:Inte-grated software for genetic linkage map construction andquantitative trait locus mapping in biparental populations[J]. Crop J,2015,3(3):269-283.
    [19]雷雅坤,刘兵强,邸锐,等.大豆不同环境下脂肪酸组分含量的QTL分析[J].作物学报,2016,42(2):303-310.
    [20]梅丽,程须珍,王素华,等.绿豆产量相关农艺性状的QTL定位[J].植物遗传资源学报,2011,12(6):948-956.
    [21] Zhuang J Y,Lin H X,Lu J,et al. Analysis of QTL×environment interaction for yield components and plantheight in rice[J]. Theor Appl Genet,1997,95(5-6):799-808.
    [22] Atchley W R,Zhu J,Zhu J. Developmental quantitativegenetics,conditional epigenetic variability and growth inmice[J]. Genetics,1997,147(2):765-776.
    [23]韩英鹏,滕卫丽,杜玉萍,等.不同发育时期大豆籽粒干物质积累的QTL动态分析[J].中国农业科学,2010,43(7):1 328-1 338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700