新型全介质谐振表面二元超材料吸波体
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Novel Binary Metamaterial Absorber Using All-dielectric Resonance Surface
  • 作者:王强 ; 王岩 ; 黄小忠 ; 熊益军 ; 张芬
  • 英文作者:WANG Qiang;WANG Yan;HUANG Xiaozhong;XIONG Yijun;ZHANG Fen;School of Aeronautics and Astronautics,Central South University;Hunan Key Laboratory of Advanced Fibers and Composites,Central South University;School of Physics and Electronics,Central South University;
  • 关键词:二元超材料吸波体 ; 低介电常数 ; 全介质谐振表面 ; 多频带
  • 英文关键词:binary metamaterial absorber;;low-permittivity;;all-dielectric resonance surface;;multiband
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:中南大学航空航天学院;中南大学新型特种纤维及其复合材料湖南省重点实验室;中南大学物理与电子学院;
  • 出版日期:2019-01-25
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国防科学技术创新项目(1716313ZT01002601;1716313ZT009052001);; 湖南省科技计划项目(2015TP1007);; 中南大学特聘副教授科研启动基金(502045002)~~
  • 语种:中文;
  • 页:CLDB201902031
  • 页数:5
  • CN:02
  • ISSN:50-1078/TB
  • 分类号:164-168
摘要
基于干涉理论,利用低介电材料全介质谐振表面(All-dielectric resonance surface,ADRS)设计并制备了一种新型二元结构超材料吸波体(Binary-structural metamaterial absorber,BMA)。优化后的BMA分别在13. 332 GHz、16. 722 GHz和17. 34 GHz处有强吸收。通过阻抗分析、能量损耗分布及场分析的方法解释了BMA的谐振与吸波机理,并研究了ADRS结构参数对吸波性能的影响。分析表明,BMA的三频谐振来源于ADRS的电谐振响应; ADRS的结构决定谐振峰处磁场分布,进而影响吸波性能。仿真结果与实测结果吻合较好。本工作提出的采用低介电材料ADRS代替传统金属谐振表面及难以制备的高介电常数ADRS,极大地简化了超材料吸波体的设计。
        In this paper,based on the interference theory,the novel binary-structural metamaterial absorber( BMA) using single low-permittivity all-dielectric resonance surface( ADRS) was designed and fabricated. The optimized BMA exhibited three strong absorption peaks at 13. 332 GHz,16. 722 GHz,and 17. 34 GHz,respectively. The resonance and absorption mechanisms of the BMA were explained via relative impedance analysis,distributions of power loss density and field analysis. Meanwhile,the influences of absorption properties on structure parameters of ADRS were studied. It can be discerned that the three resonance peaks can be owed to electric-resonance of ADRS,and the magnetic-field distributions at resonance frequencies were determined by the ADRS structure. The simulated results were well agreed with the measured one. The current design that employed the low-permittivity ADRS instead of conventional metal resonance surface or high-permittivity ADRS,dramatically simplified metamaterial designs.
引文
1 Ming S L,Lv X. Progress In Electromagnetics Research,2008,83,133.
    2 Garcia-Garcia J,Bonache J,Gil I,et al. IEEE Transactions on Microwave Theory&Techniques,2006,54(6),2628.
    3 Zhai T,Chen S,Zhou Y,et al. Applied Physics B,2011,104(4),935.
    4 Costa F,Genovesi S,Monorchio A. IEEE Transactions on Microwave Theory&Techniques,2013,61,146.
    5 Xu H X,Wang G M,Qi M Q,et al. Physical Review B,2012,86,3368.
    6 Ye Q,Liu Y,Lin H,et al. Applied Physics A,2012,107,155.
    7 Islam S,Faruque M,Islam M. Materials,2014,7,4994.
    8 Huang L,Chen H. Progress In Electromagnetics Research,2011,113,103.
    9 Park J W,Tuong P V,Rhee J Y,et al. Optics Express,2013,21,9691.
    10 Hui Y C,Wang C Q,Huang X Z. Acta Physica Sinica,2015,64(21),218102(in Chinese).惠忆聪,王春齐,黄小忠.物理学报,2015,64(21),218102.
    11 Peng L,Ran L,Chen H,et al. Physical Review Letters,2007,98(15),157403.
    12 Yang Y Y,Qu S B,Wang J F,et al. Acta Physica Sinica,2011,60(7),074201(in Chinese).杨一鸣,屈绍波,王甲富,等.物理学报,2011,60(7),074201.
    13 Wang J,Xu Z,Yu Z,et al. Journal of Applied Physics,2011,109(8),509.
    14 Zhao Q,Kang L,Du B,et al. Physical Review Letters,2008,101(2),027402.
    15 Li L Y,Wang J,Wang J F,et al. Applied Physics Letters,2015,106,212904.
    16 Liu X,Lan C,Bi K,et al. Applied Physics Letters,2016,109(6),7181.
    17 Chen J F,Wang G D,Chen Z Q,et al. In:Conference Record of the Progress in Electromagnetics Research Symposium. Guangzhou,2014,pp. 541.
    18 Zhang F L,Feng S Q,Qiu K P,et al. Applied Physics Letters,2015,106,207402.
    19 Liu X,Zhao Q,Lan C,et al. Applied Physics Letters,2013,103(3),4773-R.
    20 Liu X,Bi K,Li B,et al. Optics Express,2016,24(18),20454.
    21 Sun J,Liu L,Dong G,et al. Optics Express,2011,19(22),21155.
    22 Wanghuang T L,Chen W J,Huang Y J,et al. AIP Advances,2013,3,102118.
    23 Hu F W,Cheng J J. Industrial Technology Innovation,2017(4),15(in Chinese).胡福文,程佳剑.工业技术创新,2017(4),15.
    24 Tian X Y,Yin M,Li D C. Journal of Mechanical Engineering,2015(7),12(in Chinese).田小永,殷鸣,李涤尘.机械工程学报,2015(7),12.
    25 Smith D R,Vier D C,Koschny T,et al. Physical Review E,2005,71,036617.
    26 Du B,Wang J,Xu Z,et al. Journal of Applied Physics,2014,115(23),4773.
    27 Wang J,Xu Z,Yu Z,et al. Journal of Applied Physics,2011,109(8),509.
    28 Koschny T,Marko P,Economou E N,et al. Physical Review B,2004,71(24),245105.
    29 Yu F,Wang J,Wang J F,et al. Applied Physics Letters,2015,107,211906.
    30 Wang Q,Tang X Z,Zhou D,et al. IEEE Antennas Wireless Propagation Letters,2017,16,3200.
    31 King R J. Journal of Scientific Instruments,1966,43(43),617.
    32 Wang Q,Wang Y,Tang X Z,et al. Journal of Advanced Dielectrics,2018,8,1850021.
    33 Wang Q,Zhang F,Xiong Y J,et al. Journal of Electronic Materials,2018,DOI:10. 1007/s11664-018-6796-2.
    34 Michael I M,Larry D T. Photopolarimetry in Remote Sensing,2004,161,1.
    35 Liu S H,Liu J M,Dong X L,et al. Electromagnetic shielding and absorbing materials,Chemical Industry Press,China,2013(in Chinese).刘顺华,刘军民,董星龙,等.电磁波屏蔽及吸波材料.化学工业出版社,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700